ответить на тест!
1) Является ли число 10 решением неравенства 3х>12?
2) Является ли число -7 решением неравенства 3х>12?
3) Является ли неравенство 2х-15>3х+6 строгим?
4) Существует ли целое число принадлежащее промежутку (0;1]?
5) Верно ли, что при умножении или делении обеих частей неравенства на отрицательное число знак неравенства не меняется?
6) При любом ли значении переменной а верно неравенство
а² +1>о?
7) Является ли число 3 решением системы неравенств
ответить да нет
В решении.
Объяснение:
2) (1-2у)(1-3у) = (6у-1)у-1
Раскрыть скобки:
1-3у-2у+6у² = 6у²-у-1
Привести подобные члены:
6у²-6у²-5у+у= -1-1
-4у= -2
у= -2/-4
у=0,5
Проверка путём подстановки вычисленного значения у в уравнение показала, что данное решение удовлетворяет данному уравнению.
3) 7+2х² = 2(х+1)(х+3)
Раскрыть скобки:
7+2х² = 2(х²+3х+х+3)
7+2х² = 2(х²+4х+3)
7+2х² = 2х²+8х+6
Привести подобные члены:
2х²-2х²-8х = 6-7
-8х= -1
х= -1/-8
х= 1/8.
Проверка путём подстановки вычисленного значения х в уравнение показала, что данное решение удовлетворяет данному уравнению.
Найдите координаты точек пересечения графиков функций
Если точка с координатами (х;у) точка пересечения то
1)у=-6х+1 и у=5х+9
-6x+1=5x+9
-6x-5x=9-1
-11x= 8
x= - 8/11
тогда у= 5*(-8/11)+9= -40/11 + 99/11=59/11=5⁴/₁₁
точка пересечения (-⁸/₁₁; 5 ⁴/₁₁)
2) у=21-9х и у=-2,5х+8
21-9x= -2.5x+8
-9x+2.5x=8-21
-6.5x=-13
x= -13/ -6.5
x=2
тогда у=21-9*2=21-18=3
точка перескечения (2;3)
3) у=16,2+8х и у=-0,8х+7,4
16,2+8х= -0,8х+7,4
16,2-7,4= -0,8х-8х
8,8= -8,8х
х= -1
тогда у= 16,2+8*(-1)=16,2-8=8,2
точка пересечения (-1; 8,2)
5) у=1-3х и у=-х-1
1-3х= -х-1
-3х+х=-1-1
-2х=-2
х=1
тогда у=1-3*1=1-3=-2
точка пересечения (1; -2)
6) у=1+7х и у=6,5х
1+7х=6,5х
1=6,5х-7х
1=-0,5х
х= -2
тогда у= 1+7*(-2)=1-14=-13
точка пересечения (-2; -13)