а) {x-y-1=0 {x+y-5=0
х=1+у
1+у+у-5=0
2у=4
у=2
х=1+у=1+2
х=3
{x-y-2=0 {x+y-6=0
х=6-у
6-у-у-2=0
-2у=-4
х=6-у=6-2
х=4
в) {x-y-2=0 {3x-2y-9=0
х=2+у
3(2+у)-2у-9=0
6+3у-2у-9=0
у=3
х=2+у=2+3
х=5
г) {x-2y-3=0 {5x+y-4=0
х=3+2у
5x+y-4=0
5(3+2у)+у-4=0
15+10у+у-4=0
11у=-11
у=-1
х=3+2у=3+2(-1)=3-2
х=1
{x+2y-11=0 {4x-5y+8=0
х=11-2у
4х-5у+8=0
4(11-2у)-5у+8=0
44-8у-5у+8=0
-13у=52
у=-4
х=11-2у=11-2(-4)=11+8
х=19
{x+4y-2=0
{3x+8y-2=0
х=2-4у
3(2-4у)+8у-2=0
6-12у+8у-2=0
-4у=-4
у=1
х=2-4у=2-4*1=2-4
х=-2
Объяснение:
|x²-1|+|x²-9|=x+18
Находим нули подмодульных выражений:
x²-1=0 (x+1)*(x-1)=0 x₁=-1 x₂=1.
x²-9=0 (x+3)*(x-3)=0 x₃=-3 x₄=3. ⇒
-∞-3-113+∞
1) x∈(-∞;-3)
x²-1+x²-9=x+18
2x^2-x-28=0
D=225 √D=15
x₁=-3,5 ∈ x₂=4∉.
2) x∈[-3;-1].
x²-1+(-(x²-9))=x+18
x²-1-x²+9=x+18
8=x+18
x=-10 ∉.
3) x∈(-1;1)
-(x^2-1)+(-(x^2-9))=x+18
-x²+1-x²+9=x+18
-2x²+10-x-18=0
2x²+x+8=0
D=-63 ⇒ Уравнение не имеет действительных корней.
4) x∈[1;3].
x²-1+(-(x²-9))=x-18
x-1-x^2+9=x+18
x=-10 ∉,
5) x∈(3;+∞)
2x²-10=x+18
x₁=-3,5 ∉ x₂=4 ∈.
ответ: x₁=-3,5 x₂=4.
а) {x-y-1=0
{x+y-5=0
х=1+у
1+у+у-5=0
2у=4
у=2
х=1+у=1+2
х=3
{x-y-2=0
{x+y-6=0
х=6-у
6-у-у-2=0
-2у=-4
у=2
х=6-у=6-2
х=4
в) {x-y-2=0
{3x-2y-9=0
х=2+у
3(2+у)-2у-9=0
6+3у-2у-9=0
у=3
х=2+у=2+3
х=5
г) {x-2y-3=0
{5x+y-4=0
х=3+2у
5x+y-4=0
5(3+2у)+у-4=0
15+10у+у-4=0
11у=-11
у=-1
х=3+2у=3+2(-1)=3-2
х=1
{x+2y-11=0
{4x-5y+8=0
х=11-2у
4х-5у+8=0
4(11-2у)-5у+8=0
44-8у-5у+8=0
-13у=52
у=-4
х=11-2у=11-2(-4)=11+8
х=19
{x+4y-2=0
{3x+8y-2=0
х=2-4у
3(2-4у)+8у-2=0
6-12у+8у-2=0
-4у=-4
у=1
х=2-4у=2-4*1=2-4
х=-2
Объяснение:
|x²-1|+|x²-9|=x+18
Находим нули подмодульных выражений:
x²-1=0 (x+1)*(x-1)=0 x₁=-1 x₂=1.
x²-9=0 (x+3)*(x-3)=0 x₃=-3 x₄=3. ⇒
-∞-3-113+∞
1) x∈(-∞;-3)
x²-1+x²-9=x+18
2x^2-x-28=0
D=225 √D=15
x₁=-3,5 ∈ x₂=4∉.
2) x∈[-3;-1].
x²-1+(-(x²-9))=x+18
x²-1-x²+9=x+18
8=x+18
x=-10 ∉.
3) x∈(-1;1)
-(x^2-1)+(-(x^2-9))=x+18
-x²+1-x²+9=x+18
-2x²+10-x-18=0
2x²+x+8=0
D=-63 ⇒ Уравнение не имеет действительных корней.
4) x∈[1;3].
x²-1+(-(x²-9))=x-18
x-1-x^2+9=x+18
x=-10 ∉,
5) x∈(3;+∞)
x²-1+x²-9=x+18
2x²-10=x+18
2x^2-x-28=0
D=225 √D=15
x₁=-3,5 ∉ x₂=4 ∈.
ответ: x₁=-3,5 x₂=4.