В одном из предыдущих ответов не учтено, что в каждом матче участвуют ДВЕ команды, поэтому, если бы проводилось по одному матчу, то матчей было бы 18*17/2=153=(С (2,18), а поскольку они проводят по 2 матча - то в два раза больше. Элементарная задача на комбинаторику. А те ответы, где написано полная чушь.
Примечание: С (2,18) - так обозначается в комбинаторике число комбинаций при выборе двух элементов из 18 возможных. Оно равно 18!/(2!*(18-2)!)=18!/(2!*16!)=18*17/(2*1)=18*17/2=153
1)S=1,3 * 0,5 *a*b=0,65ab . Значит, площадь уменьшилась на 100-65=35 %
2)Дано:
ABCD – трапеция,
АС и AD – диагонали трапеции,
Х – середина АС, Y – середина BD.
ХY = 2 см, AD= 7см
Найти: ВС – меньшее основание трапеции
1. Докажем, что отрезок, соединяющий середины диагоналей трапеции равен полуразности оснований.
MX – средняя линия треугольника АВС, следовательно, MX=BC/2
NY – средняя линия треугольника DBC, следовательно, NY=BC/2
MN = (AD+BC)/2
XY=MN – MX – NY = (AD+BC)/2 – BC/2 – BC/2 = (AD-BC)/2
XY =(AD-BC)/2 (теперь это доказано)
2. Найдём ВС:
(AD-BC)/2=XY
AD-BC=2XY
В это выражение подставим значения AD=7 см и ХУ=2 см (из условия задачи):
7 –BC=2*2
7 – BC= 4
BC = 3 (см) - длина меньшего основания трапеции
Объяснение:
Будет сыграно С (2,18)*2=18*17/2*2=306 матчей.
В одном из предыдущих ответов не учтено, что в каждом матче участвуют ДВЕ команды, поэтому, если бы проводилось по одному матчу, то матчей было бы 18*17/2=153=(С (2,18), а поскольку они проводят по 2 матча - то в два раза больше. Элементарная задача на комбинаторику. А те ответы, где написано полная чушь.
Примечание: С (2,18) - так обозначается в комбинаторике число комбинаций при выборе двух элементов из 18 возможных. Оно равно 18!/(2!*(18-2)!)=18!/(2!*16!)=18*17/(2*1)=18*17/2=153
Объяснение: