Мы видим так называемую симметрическую систему уравнений(при замене переменных друг на друг, система не изменится. Для такой системы есть стандартная замена xy=t, x+y=k
, тогда перепишем как. Теперь нужно представить уравнение в первой строке системы через новые переменные, для этого попробуем выделить полный квадрат, x²+y² из этой суммы можно получить 2 вида квадрата, квадрат суммы и квадрат разности, нам выгодно сделать сумму, тогда добавим 2xy, но чтобы ничего не изменилось вычтем 2xy. Тогда (x²+2xy+y²)-2xy=5. Свернем (x+y)²-2xy=5. Теперь мы видим наши замены в чистом виде 1-ая строка = k²-2t=5.
. Теперь перейдем к следующему. из второго уравнения вычтем t из обеих частей, тогда k=5-t. и подставим это значение k в первое.
Расскроем скобки, t²-10t+25-2t-5=0
t²-12t+20=0. Получили квадратное уравнение, которое решаем любым удобным (для меня Т. обратная Т.Виета)
t=10 или t=2. удобнее записать так =10 =2, отсюда найдем
=5-=5-10=-5, =5-=5-2=3.
Теперь обратные замены в 2 системы
. опять замена), x=-5-y., -5y-y²=10,y²+5y+10=0, D=25-40,эта система решений не имеет( на множестве действительных чисел)
. Опять замена x=3-y. 3y-y²=2, y²-3y+2,тогда =2,=1. Тогда =1,=2. Что не удивительно, т.к. в симметрических системах достаточно получить ответ лишь для одной переменной и просто поменять местами с другой, но мы в этом, так сказать, убедились.
1) Масса 1 раствора= х кг, 2 р-ра = у кг. Масса смеси = х+у+5 кг. Кислоты : в 1 р-ре = 0,6х кг, во 2 р-ре = 0,3у кг, в 3 р-ре = 0,2(х+у+5) кг. Уравнение: 0,6х+0,3у=0,2(х+у+5) . Аналогично, составим 2-ое уравнение, учитывая, что вместо 5 кг воды добавили 5 кг 90% р-ра: 0,6х+0,3у+0,9*5=0,7(х+у+5) . Из 2-го уравнения вычтем 1-ое уравнение: 4,5=0,5(х+у+5) ⇒ х+у=4 ⇒ 0,6х+0,3у=0,2(4+5) ⇒ 0,3(х+у)+0,3х=1,8 ⇒ 0,3*4+0,3х=1,8 ⇒ 1,2+0,3х=1,8 ⇒ х=2 ⇒ у=4-х=2 ответ: 2 кг .
2) ΔМОР~ΔKON по 2 углам (∠РМО=∠NKO как внутр. накрест лежащие при NK║MP и секущей МК ; ∠NOK=∠MOP как вертикальные). NO/PO=KO/MO=NK/MP=24/40=3/5 ⇒ KO=3/5MO ; MO=3/5PO . ΔAMO~ΔNMK по 2 углам ( ∠М - общий, ∠МАО=∠MNK как соответственные при AO║NK и секущей MN). AO/NK=MO/MK=MO/(MO+KO)=MO/(MO+3/5MO)=5/8 ⇒ AO=(5/8)NK=15 (см) . Аналогично, ВО=(5/8)NK=15 (см) . АВ=АО+ВО=30 (см)
(1;2) (2;1)
Объяснение:
Мы видим так называемую симметрическую систему уравнений(при замене переменных друг на друг, система не изменится. Для такой системы есть стандартная замена xy=t, x+y=k
, тогда перепишем как. Теперь нужно представить уравнение в первой строке системы через новые переменные, для этого попробуем выделить полный квадрат, x²+y² из этой суммы можно получить 2 вида квадрата, квадрат суммы и квадрат разности, нам выгодно сделать сумму, тогда добавим 2xy, но чтобы ничего не изменилось вычтем 2xy. Тогда (x²+2xy+y²)-2xy=5. Свернем (x+y)²-2xy=5. Теперь мы видим наши замены в чистом виде 1-ая строка = k²-2t=5.
. Теперь перейдем к следующему. из второго уравнения вычтем t из обеих частей, тогда k=5-t. и подставим это значение k в первое.
Расскроем скобки, t²-10t+25-2t-5=0
t²-12t+20=0. Получили квадратное уравнение, которое решаем любым удобным (для меня Т. обратная Т.Виета)
t=10 или t=2. удобнее записать так =10 =2, отсюда найдем
=5-=5-10=-5, =5-=5-2=3.
Теперь обратные замены в 2 системы
. опять замена), x=-5-y., -5y-y²=10,y²+5y+10=0, D=25-40,эта система решений не имеет( на множестве действительных чисел)
. Опять замена x=3-y. 3y-y²=2, y²-3y+2,тогда =2,=1. Тогда =1,=2. Что не удивительно, т.к. в симметрических системах достаточно получить ответ лишь для одной переменной и просто поменять местами с другой, но мы в этом, так сказать, убедились.
ответ 2 пары чисел (1;2) (2;1)
Масса смеси = х+у+5 кг.
Кислоты : в 1 р-ре = 0,6х кг, во 2 р-ре = 0,3у кг, в 3 р-ре = 0,2(х+у+5) кг.
Уравнение:
0,6х+0,3у=0,2(х+у+5) .
Аналогично, составим 2-ое уравнение, учитывая, что вместо
5 кг воды добавили 5 кг 90% р-ра:
0,6х+0,3у+0,9*5=0,7(х+у+5) .
Из 2-го уравнения вычтем 1-ое уравнение:
4,5=0,5(х+у+5) ⇒ х+у=4 ⇒ 0,6х+0,3у=0,2(4+5) ⇒
0,3(х+у)+0,3х=1,8 ⇒ 0,3*4+0,3х=1,8 ⇒ 1,2+0,3х=1,8 ⇒
х=2 ⇒ у=4-х=2
ответ: 2 кг .
2) ΔМОР~ΔKON по 2 углам (∠РМО=∠NKO как внутр. накрест лежащие при NK║MP и секущей МК ; ∠NOK=∠MOP как вертикальные).
NO/PO=KO/MO=NK/MP=24/40=3/5 ⇒ KO=3/5MO ; MO=3/5PO .
ΔAMO~ΔNMK по 2 углам ( ∠М - общий, ∠МАО=∠MNK как соответственные при AO║NK и секущей MN).
AO/NK=MO/MK=MO/(MO+KO)=MO/(MO+3/5MO)=5/8 ⇒
AO=(5/8)NK=15 (см) .
Аналогично, ВО=(5/8)NK=15 (см) .
АВ=АО+ВО=30 (см)