Дано квадратное уравнение ax2 + bx + c = 0. Если a + b + c = 0 (сумма коэффициентов), то
x1 = 1, x2 = c/a
Свойство 2
Дано квадратное уравнение ax2 + bx + c = 0. Если a - b + c = 0 (сумма коэффициентов), когда b взято с противоположным знаком или a + c = b, то
x1 = -1, x2 = -c/aСвойство 3
Если в квадратном уравнении ax2 + bx + c = 0. Коэффициент b представлен в виде 2k, т.е. является четным числом, то формулу корней уравнения можно переписать в более простом виде
D = (b/2)2 + a*c
Свойство 3
Если в квадратном уравнении ax2 + bx + c = 0. Коэффициент b представлен в виде 2k, т.е. является четным числом, то формулу корней уравнения можно переписать в более простом виде
Заметим, что t1, t2, t3 — корни уравнений f(x) = a и f(x) = b, при этом корни этих уравнений не совпадают, поэтому можно считать, что уравнение f(x) = a имеет один корень x = t1.
Рассмотрим уравнение f(f(f(x))) = 0. Его решения, очевидно, являются решениями уравнений f(f(x)) = a и f(f(x)) = b. Но уравнение f(f(x)) = a равносильно уравнению f(x) = t1 и имеет не более двух корней, а уравнение f(f(x)) = b — не более четырех корней (как уравнение четвертой степени).
То есть уравнение f(f(f(x))) = 0 имеет не более 6 корней.
Свойство 1
Дано квадратное уравнение ax2 + bx + c = 0. Если a + b + c = 0 (сумма коэффициентов), то
x1 = 1, x2 = c/a
Свойство 2
Дано квадратное уравнение ax2 + bx + c = 0. Если a - b + c = 0 (сумма коэффициентов), когда b взято с противоположным знаком или a + c = b, то
x1 = -1, x2 = -c/aСвойство 3
Если в квадратном уравнении ax2 + bx + c = 0. Коэффициент b представлен в виде 2k, т.е. является четным числом, то формулу корней уравнения можно переписать в более простом виде
D = (b/2)2 + a*c
Свойство 3
Если в квадратном уравнении ax2 + bx + c = 0. Коэффициент b представлен в виде 2k, т.е. является четным числом, то формулу корней уравнения можно переписать в более простом виде
D = (b/2)2 + a*c
ответ: Нет.
Из условия следует, что f(x) = (x – a)(x – b), где a ≠ b.
Пусть искомый многочлен f(x) существует.
Тогда, очевидно f(f(x)) = (x – t1)²(x – t2)(x – t3).
Заметим, что t1, t2, t3 — корни уравнений f(x) = a и f(x) = b, при этом корни этих уравнений не совпадают, поэтому можно считать, что уравнение f(x) = a имеет один корень x = t1.
Рассмотрим уравнение f(f(f(x))) = 0. Его решения, очевидно, являются решениями уравнений f(f(x)) = a и f(f(x)) = b. Но уравнение f(f(x)) = a равносильно уравнению f(x) = t1 и имеет не более двух корней, а уравнение f(f(x)) = b — не более четырех корней (как уравнение четвертой степени).
То есть уравнение f(f(f(x))) = 0 имеет не более 6 корней.