- пад алгебраическими дробями с C-5. Сложение и вычитание алгебраических дробей с разными знаменателями Вариант 2 Упростите выражение: 5/ x ^2+ 5x + x+15/25-x^2
Для нахождения площади фигуры, ограниченной линиями функций у = х^2, у = 0 и х = 2 построим сначала графики этих функций. График функции у = 0 - прямая, которая задаёт ось ОХ; график функции х = 2 - прямая, параллельная оси ОУ и пересекающая ось ОХ в точке х =2. График функции у = х^2 - парабола, построена поточечно путём подбора значений координаты х и вычислением значения функции у в каждой такой точке. То есть:
1) х = -4, у = (-4)^2 = 16, на графике откладываем точки х = -4 и у = 16;
2) х = -3, у = (-3)^2 = 9, на графике откладываем точки х = -3 и у = 9;
3)х = -2, у = (-2)^2 = 4, на графике откладываем точки х = -2 и у = 4;
4)х = -1, у = (-1)^2 = 1, на графике откладываем точки х = -1 и у = 1;
5)х = 0, у = 0, на графике откладываем точки х = 0 и у = 0;
6)х = 4, у = 4^2 = 16, на графике откладываем точки х = 4 и у = 16;
7) х = 3, у = 3^2 = 9, на графике откладываем точки х = 3 и у = 9;
8)х = 2, у = 2^2 = 4, на графике откладываем точки х = 2 и у = 4;
9)х = 1, у = 1^2 = 1, на графике откладываем точки х = 1 и у = 0.
Заштрихованная на графике область является фигурой, площадь которой необходимо вычислить (площадь криволинейной трапеции). Вычисляется она по формуле определенного интеграла S = ∫f(x) dx - g(x) dx (верхний предел b, нижний предел a). Найдём верхний и нижний пределы интеграла. Для этого воспользуемся построенным графиком. Определим, на каком промежутке функция у = х^2 находится выше оси ОХ (так как значение площади не может быть числом отрицательным). Это отрезок [0;2], значит верхним пределом интеграла будет два (b = 2), нижним ноль (а = 0).
Вычислим определенный интеграл функции у = х^2 с пределами 2 и 0, значение которого и будет равно значению площади:
S = ∫(х^2)dx (верхний предел 2, нижний 0).
Интегрируем с формулы интегрирования:
∫х^ n dx = x^(n+1) / n+1,
и получаем выражение х^3/3.
Далее воспользуемся формулой Ньютона - Лейбница и получим значение площади, равное 8/3 или ~ 2,67 кв.ед.
ответ: площадь фигуры, ограниченной линиями у = х^2, х = 2, у= 0 равна 8/3 или ~ 2,67 кв.единиц.
1. Формула которая была применена это, формула отрицательной степени дроби.
т.е эта формула говорит что дробь с отрицательной степенью "-n", равен дроби обратной с положительной степенью "n". Или своими словами дробь перевернули и степень лишилась минуса..
2. первую дробь переписали, дроби умножаются.
А на вторую дробь применили одно из свойств степени:
И в данном случае "а - числитель" это выражение поэтому степень распределяется на каждый член этого выражения: (a^(-2)×b^(3))³
И выполняется ещё одно свойство степени:
и тоже распределяется на каждый член выражения:
a^(-2×3)×b^(3×3)=a^(-6)×b^(9).
С числителем разобрались, переходим к знаменателю: 3, его также возводим в степень "3" по первому свойству которую я вам написал.
3. Чтобы умножить дробь на дробь, нужно: 1. Числитель первой дроби умножить на числитель второй дроби, и результат записать в числитель новой дроби. 2. Знаменатель первой дроби умножить на знаменатель второй дроби, и результат записать в знаменатель той же самой новой дроби. т.е:
4. В числителе 9, и в знаменателе 27 успешно сокращаются на 9.
т.е и 9, и 27 делятся на 9.
в числителе остаётся. a^(-6)×b^(9).
В знаменателе "3" которая осталась от 27 после сокращения, умножается на 2, потому что от перемен мест множителей, произведение не меняется. получаем 6×a^(-3)×b(5).
Для нахождения площади фигуры, ограниченной линиями функций у = х^2, у = 0 и х = 2 построим сначала графики этих функций. График функции у = 0 - прямая, которая задаёт ось ОХ; график функции х = 2 - прямая, параллельная оси ОУ и пересекающая ось ОХ в точке х =2. График функции у = х^2 - парабола, построена поточечно путём подбора значений координаты х и вычислением значения функции у в каждой такой точке. То есть:
1) х = -4, у = (-4)^2 = 16, на графике откладываем точки х = -4 и у = 16;
2) х = -3, у = (-3)^2 = 9, на графике откладываем точки х = -3 и у = 9;
3)х = -2, у = (-2)^2 = 4, на графике откладываем точки х = -2 и у = 4;
4)х = -1, у = (-1)^2 = 1, на графике откладываем точки х = -1 и у = 1;
5)х = 0, у = 0, на графике откладываем точки х = 0 и у = 0;
6)х = 4, у = 4^2 = 16, на графике откладываем точки х = 4 и у = 16;
7) х = 3, у = 3^2 = 9, на графике откладываем точки х = 3 и у = 9;
8)х = 2, у = 2^2 = 4, на графике откладываем точки х = 2 и у = 4;
9)х = 1, у = 1^2 = 1, на графике откладываем точки х = 1 и у = 0.
Заштрихованная на графике область является фигурой, площадь которой необходимо вычислить (площадь криволинейной трапеции). Вычисляется она по формуле определенного интеграла S = ∫f(x) dx - g(x) dx (верхний предел b, нижний предел a). Найдём верхний и нижний пределы интеграла. Для этого воспользуемся построенным графиком. Определим, на каком промежутке функция у = х^2 находится выше оси ОХ (так как значение площади не может быть числом отрицательным). Это отрезок [0;2], значит верхним пределом интеграла будет два (b = 2), нижним ноль (а = 0).
Вычислим определенный интеграл функции у = х^2 с пределами 2 и 0, значение которого и будет равно значению площади:
S = ∫(х^2)dx (верхний предел 2, нижний 0).
Интегрируем с формулы интегрирования:
∫х^ n dx = x^(n+1) / n+1,
и получаем выражение х^3/3.
Далее воспользуемся формулой Ньютона - Лейбница и получим значение площади, равное 8/3 или ~ 2,67 кв.ед.
ответ: площадь фигуры, ограниченной линиями у = х^2, х = 2, у= 0 равна 8/3 или ~ 2,67 кв.единиц.
Подробнее - на -
1. Формула которая была применена это, формула отрицательной степени дроби.
т.е эта формула говорит что дробь с отрицательной степенью "-n", равен дроби обратной с положительной степенью "n". Или своими словами дробь перевернули и степень лишилась минуса..
2. первую дробь переписали, дроби умножаются.
А на вторую дробь применили одно из свойств степени:
И в данном случае "а - числитель" это выражение поэтому степень распределяется на каждый член этого выражения: (a^(-2)×b^(3))³
И выполняется ещё одно свойство степени:
и тоже распределяется на каждый член выражения:
a^(-2×3)×b^(3×3)=a^(-6)×b^(9).
С числителем разобрались, переходим к знаменателю: 3, его также возводим в степень "3" по первому свойству которую я вам написал.
3. Чтобы умножить дробь на дробь, нужно: 1. Числитель первой дроби умножить на числитель второй дроби, и результат записать в числитель новой дроби. 2. Знаменатель первой дроби умножить на знаменатель второй дроби, и результат записать в знаменатель той же самой новой дроби. т.е:
4. В числителе 9, и в знаменателе 27 успешно сокращаются на 9.
т.е и 9, и 27 делятся на 9.
в числителе остаётся. a^(-6)×b^(9).
В знаменателе "3" которая осталась от 27 после сокращения, умножается на 2, потому что от перемен мест множителей, произведение не меняется. получаем 6×a^(-3)×b(5).
5. Степени у оснований делителей сокращаются.
по свойству степени:
a^(-6)÷a^(-3)=a^(-6-(-3))=a^(-6+3)=a^(-3). (числитель)
b^(9)÷b^(4)=b^(9-4)=b^5; также у нас в знаменателе была "6". Поэтому знаменатель принимает такой вид: 6×b^(5)
дробь преобразовалась в такую:
т.е a^(-3) делится на 6b^(5).
Чтобы поделить что-то на дробь, нужно: это "что-то" умножить на дробь обратную данной. т.е: