А.
любое число со знаком минус во второй степени принимает положительное значение
например:
(-4)^2=16
(-5)^2=25
Б.
любое число со знаком плюс во второй степени принимает положительное значение
2^2=4
3^2=9
В.
если к любому числу со знаком плюс во 2 степени прибавить любое число, то выражение будет принимать положительное значение
2^2+2=6
3^2+2=11
Г.
(x + 2)^2
если к любому числу со знаком плюс прибавить любое число и возвести в квадрат то выражение будет принимать положительное значение.
(2+2)^2=16
(3+3)^2=36
x²- 8x + 67 < 0
y(x) = x² - 8x + 67 - это квадратичная функция; у которой ветви направлены вверх, так как коэффициент перед х² равен 1, то есть он больше нуля.
Сначала решим квадратное уравнение:
x²- 8x + 67 = 0
Д = 64 - 4·67 = - 204 < 0 корней нет
Если Дискриминант меньше нуля, то данная парабола вся полностью лежит выше оси ОХ, и она не будет пересекать эту ось ОХ .
Поэтому, все значения функции будут только положительными.
Следовательно, x²- 8x + 67 < 0 не имеет решений.
А.
любое число со знаком минус во второй степени принимает положительное значение
например:
(-4)^2=16
(-5)^2=25
Б.
любое число со знаком плюс во второй степени принимает положительное значение
например:
2^2=4
3^2=9
В.
если к любому числу со знаком плюс во 2 степени прибавить любое число, то выражение будет принимать положительное значение
например:
2^2+2=6
3^2+2=11
Г.
(x + 2)^2
если к любому числу со знаком плюс прибавить любое число и возвести в квадрат то выражение будет принимать положительное значение.
например:
(2+2)^2=16
(3+3)^2=36