А) 2ax-(a+b)=4x+(3a-b-8) 2ax-a-b=4x+3a-b-8 2ax-a-b-4x-3a+b+8=0, приводим подобные, причем b - сокращается. 2ax-4a-4x+8=0, сократим на 2 ax-2x-2a+4=0 ax-2x=2a-4 (а-2)х=2(а-2) Делаем вывод: что бы данное выражение не зависело от переменной Х и одна часть равнялось другой, нужно что бы множителем при Х был ноль, тогда и справа будет ноль. Отсюда а-2=0, а=2. Т.к. b - сократилось, то оно может быть любым числом.
б)2x²+x-(a+b)x+2b-a = -ax+2(x²-b)+(1-b)(x²+2x) 2x²+x-aх-bx+2b-a = -ax+2x²-2b+x²+2x-bx²-2bx, переносим влево 2x²+x-aх-bx+2b-a + ax-2x²+2b-x²-2x+bx²+2bx = 0, приводим подобные -x²+bx²-х+bx+4b-a=0 x²(b-1)+х(b-1)+4b-a=0, рассуждаем как в предыдущем примере, что бы избавиться от переменной Х принимаем b-1=0 ⇒ b=1, подставляем и получаем: 4-a=0 ⇒ а=4, значит а=4, b=1.
sin2x=2sinxcosx
2sinxcosx+sqrt2*sinx=0
sqrt2*sinx(sqrt2*cosx+1)=0
sqrt2 *sinx=0 sqrt2*cosx+1=0
sin x=0 sqrt2*cosx=-1
x=пn cosx=-sqrt2/2
x=плюс, минус п-arccos sqrt2/2+пk
x=плюс,минус 2п/3+Пk
Далее выбираем корни. при k=0 x=плюс минус 2п/3
при n=-1,x=-п при k=1 x=п/3
при n=0,x=0 при k=-1 x=-п/3
при n=1,x=п при k=2 x=4п/3
с этим корнем три ответа. при k=-2, x=-4п/3
всего должно получиться 9 корней, но проверьте лучше сами)
2ax-a-b=4x+3a-b-8
2ax-a-b-4x-3a+b+8=0, приводим подобные, причем b - сокращается.
2ax-4a-4x+8=0, сократим на 2
ax-2x-2a+4=0
ax-2x=2a-4
(а-2)х=2(а-2)
Делаем вывод: что бы данное выражение не зависело от переменной Х и одна часть равнялось другой, нужно что бы множителем при Х был ноль, тогда и справа будет ноль. Отсюда а-2=0, а=2. Т.к. b - сократилось, то оно может быть любым числом.
б)2x²+x-(a+b)x+2b-a = -ax+2(x²-b)+(1-b)(x²+2x)
2x²+x-aх-bx+2b-a = -ax+2x²-2b+x²+2x-bx²-2bx, переносим влево
2x²+x-aх-bx+2b-a + ax-2x²+2b-x²-2x+bx²+2bx = 0, приводим подобные
-x²+bx²-х+bx+4b-a=0
x²(b-1)+х(b-1)+4b-a=0, рассуждаем как в предыдущем примере, что бы избавиться от переменной Х принимаем b-1=0 ⇒ b=1, подставляем и получаем:
4-a=0 ⇒ а=4, значит а=4, b=1.