Параллелограмның периметрі 24 см. . Іргелес қабырғалардың айырымы 3 см екендігін ескеріп, онын кабырғаларын табыңыз Жауабы: 4,5 см және 7,5 см Қайсысын шығарсаңыздарда өздеріңіз біліңіздер кешкі 6 ға дейін шығарыңыздаршы өтініш
Для функции y=x^2 найдите: 1 область определения функции; 2 множество значений функции; 3 наименьшее (наибольшее) значение функции; 4 уравнение оси симметрии параболы: 5 нули функции; 6 промежутки знакопостоянства функции; 7 промежутки монотонности функции Объяснение:1. Область определения (-∞; +∞). 2. Область значений [-2;+∞). 3. Минимальное значение f(x) принимает в точке xmin = 2, f(2) = -2 4. Ось симметрии x=2. 5. Нули функции x1=1, x2=3. 6. f(x)>0, при х∈(-∞;1)∪(3;+∞). f(x)<0, при х∈(1;3). 7. f(x) убывает при х∈(-∞;2), f(x) возрастает при х∈(2;+∞). Для функции y(x)=x²-4x+3 найдите: 1) область определения функции; 2)множество значений функции; 3)наименьшее (наибольшее) значение функции; 4)уравнение оси симметрии параболы: 5)нули функции; 6)промежутки знакопостоянства функции; 7)промежутки монотонности функции
1 область определения функции;
2 множество значений функции;
3 наименьшее (наибольшее) значение функции;
4 уравнение оси симметрии параболы:
5 нули функции;
6 промежутки знакопостоянства функции;
7 промежутки монотонности функции
Объяснение:1. Область определения (-∞; +∞).
2. Область значений [-2;+∞).
3. Минимальное значение f(x) принимает в точке xmin = 2, f(2) = -2
4. Ось симметрии x=2.
5. Нули функции x1=1, x2=3.
6. f(x)>0, при х∈(-∞;1)∪(3;+∞).
f(x)<0, при х∈(1;3).
7. f(x) убывает при х∈(-∞;2), f(x) возрастает при х∈(2;+∞).
Для функции y(x)=x²-4x+3 найдите:
1) область определения функции;
2)множество значений функции;
3)наименьшее (наибольшее) значение функции;
4)уравнение оси симметрии параболы:
5)нули функции;
6)промежутки знакопостоянства функции;
7)промежутки монотонности функции
!
!
!
!
⇒
! -1 х
! -2
! -3
! -4
! у= - 4
!
пересекает график в точке (0;-4)