Печь снабжена кожухом вокруг дверцы топки. Верхняя часть кожуха выполнена в виде арки,приваренной к передней стенке по дуге окружности (см.рис).Для установки печки хозяину понадобилось узнать радиус закругления арки R. Размеры кожуха показаны на ресунке.Найдите радиус в сантиметрах:ответ округлите до десятых.
-5*7=q; -5+7=-p q=-35; p=-2
x^2 -2x-35=0 искомое уравнение
2)x2-x1=6
x^2-4x+q=0
{x1+x2=4;
{x2-x1=6 2*x2=10; x2=5; x1=4-5=-1
q=-1*5=-5
3)9x^4-37x^2+4=0
t=x^2; 9t^2-37t+4=0
D=37^2-4*9*4=37^2 -(4*3)2=(37-12)(37+12)=25*49=(5*7)^2
t1=37-35)/18=1/9; t2=(37+35)/18=4
x^2=1/9 ili x^2=4
x=1/3 ili x=-1/3 x=-2 ili x=2
ответ -2; -1/3; 1/3; 2.
4)(x^2-8)^2 +3(x^2-8)=4
t=x^2-8; t^2+3t-4=0
t1=1; t2=-4 (по теореме Виета!)
x^2-8=1 ili x^2-8=-4
x^2=9 x^2=4
x=+-3 x=+-2
ответ. -3; -2; 2; 3
А 9x^4-13x^2+4=0
t=x^2; 9t^2-13t+4=0
D=169-144=25=5^2; t1=(13-5)/18=8/18=4/9 ;t2=1
x^2=4/9 ili x^2=1
x=+-2/3 x=+-1
4x-10=0; x=2,5
2x-14=0; x=7
Нанесем эти точки на числовую ось:
2,57
Эти точки разбивают числовую прямую на три промежутка.Рассмотрим все три случая:
1)x<2,5
На этом промежутке оба подмодульных выражения отрицательны, поэтому модули раскроем со сменой знака:
[-4x+10+2x-14]/ (x+3)(x-6) <=0
(-2x-4)/(x+3)(x-6) <=0
-2(x+2) / (x+3)(x-6) <=0
(x+2)/(x+3)(x-6) >=0
-__(-3)__+[-2]___-(6)+
С учетом промежутка получаем: x e (-3; 2]
2)2,5<=x<7
Первый модуль раскроем без смены знака, а второй - со сменой знака:
[4x-10+2x-14]/(x+3)(x-6) <=0
(6x-24)/(x+3)(x-6)<=0
6(x-4)/(x+3)(x-6)<=0
(x-4)/(x+3)(x-6)<=0
-(-3)___+[4]-___(6)+
С учетом промежутка: x e [4;6)
3)x>=7
[4x-10-2x+14]/(x+3)(x-6)<=0
(2x+4)/(x+3)(x-6)<=0
2(x+2)/(x+3)(x-6)<=0
(x+2)/(x+3)(x-6)<=0
___-(-3)+__[-2]___-(6)+
Решений нет, т.к. x>=7
Решением неравенства являются промежутки: x e (-3;2] U [4;6)
Сумма целых решений: -2-1+1+2+4+5=9