Пекарня випікає кілограмові калачі .під час перевірки виявилось , що маса трьох зі ста калачів менша від 1 кг на 31-40 г, п'ятнадцяти на 21-30 г, двадцяти на 11-20 г, тридцяти на 1-10 г ; маса сімнадцяти калачів більш від 1 кг на 1-9 г, а двох на 10-19 г .складіть частотну діаграму і побудуйте відповідну гістограму
1) если х >0. тогда функция примет вид у= -х^2 +3. Графиком является парабола, ветви которой направлены вниз,
вершина параболы имеет координаты (0,3), т.е парабола поднята на 3 масштабных единицы вверх.
Точки пересечения параболы с осью ОХ имеет координаты (-V3:0) и (+V3;0) Знак V -корень квадратный.
2) Если х<0, функция принимает вид у=x^2 +3. Графиком также является парабола, но ее ветви направлены вверх,
вершина параболы имеет координаты (3,0), т.е график подвинулся вверх по оси ОУ. значит точек пересечения параболы с осью ОХ нет.
К трем задачам по готовым рисункам заданы одинаковые вопросы. 1)Докажите, что ∆ АВС=∆ADC. 2) Является ли биссектрисой угла ВСD луч СА? (рис.1,3) 3) Докажите, что ∆ ВСF=∆ DCF (рис.1,3)
Рис.1 В четырехугольнике АВСD диагонали АС и ВD пересекаются в т.F под прямым углом. АВ=АD; угол ВАD=DАF.
1) В треугольнике ВАD стороны AB=AD ⇒ он равнобедренный; АF делит угол А поровну ( дано) ⇒AF– биссектриса и высота. Т.к. ∆ ВАD равнобедренный, то АF медиана. ВF=DF, угол BFC=90° ⇒ FC - медиана и высота треугольника ВСD, это признак равнобедренного треугольника, из чего следует СВ=СD. В ∆ АВС и ∆ ADC стороны АВ=AD; BC=DC, АС - общая. Эти треугольники равны по трем сторонам, т.е. по 3-му признаку равенства.
2) АС – медиана и высота равнобедренного треугольника, значит, и биссектриса его угла.
3) Из доказанного выше СВ=CD, BF=DF, СF общая, АС - биссектриса. ∆ ВСF=∆ DCF по 1-му признаку ( две стороны у угол между ними) и 3-м сторонам ( по 3-му признаку).
Рис.2. В четырехугольнике АВСD диагональ АС при пересечении двух противоположных сторон образует равные накрестлежащие углы САD=ACD=60°. => Если накрестлежащие углы при пересечении двух прямых секущей равны, эти прямые параллельны. => угол АСD=углу ВАС=30°. ∆ АВС=∆ АСD по стороне двум равным углам, прилежащим к ней (2-й признак равенства).
Рис.3. Диагональ АС четырехугольника АВСD делит его на треугольники со сторонами АВ=AD; CD=CB, АС - общая.
1) ∆ АВС и ADC равны по трем сторонам (3-й признак равенства).
2) Из п.1. следует < BCA= < DCA => АС - биссектриса угла ВС D.
3) В ∆ BCF и ∆ DCF стороны ВС=DC (дано), углы при вершине С равны (доказано), CF- общая. Эти треугольники равны по двум сторонам и углу между ними, т.е. по 1-му признаку равенства треугольников.
Объяснение: