Перед тобой средневековая крепость. Вокруг башни идёт вооруженный арбалетчик, двигаясь по левой от тебя стороне башни вперёд. Башня выполнена из камня и имеет форму цилиндра. Вдруг он видит путника в поле перед собой. На каком расстоянии от арбалетчика находится путник, если диаметр башни равен 0,014 км, а расстояние от путника до башни равно 1800 см?
Всего шаров 8.
Вероятность извлечь первым белый шар равна 3/8, остаётся 7 шаров из них 2 белых. Вероятность извлечь второй белый шар 2/7. Вероятность что первый и второй белые шары
Р₁=3/8*2/7=6/56=0,11
Аналогично находим что оба шара черные
Р₂=5/8*4/7=20/56=0,36
Вероятность что оба шара одного цвета (или оба белые или оба черные)
Р=Р₁+Р₂=0,11+0,36=0,47
Вероятность что первый белый, а второй черный
Р₃=3/8*5/7=15/56=0,27
Вероятность что первый черный, а второй белый
Р₄=5/8*3/7=15/56=0,27
Вероятность что шары разного цвета
Р=Р₃+Р₄=0,27+0,27=0,54
ответ: более вероятно событие в) - шары разных цветов
Объяснение:
Если Вы помните, рациональные числа были введены потому, что во множестве целых чисел не всегда можно выполнить деление. Например, существует целое число, которое является результатом деления 8 на 2, но не существует целого числа, которое является результатом деления 8 на 3. Поэтому были введены рациональные числа, то есть дроби вида p/q. Целые числа стали их подмножеством, когда q=1.
Для выполнимости деления рациональных чисел достаточно, но вот для извлечения корней - нет. Например, не существует рационального числа, которое было бы результатом извлечения квадратного корня из двух. (Это доказывается в Вашем учебнике, я уверен. Если не поняли, напишите, объясню.) Поэтому производят дальнейшее расширение системы чисел. К рациональным числам добавляют ещё и иррациональные, и все они вместе образуют множество действительных чисел.
Если не вдаваться в подробности, то рациональные числа можно отличить от иррациональных следующим образом. Рациональные числа, если их записать десятичной дробью, обязательно дадут конечную или бесконечную периодическую дробь. Это тоже легко доказать. Иррациональные же числа, записанные в виде десятичной дроби, оказываются представленными бесконечной НЕпериодической дробью.
Типичным примером иррационального числа является корень квадратный из двух. Пи - тоже иррациональное число, причем в определенном смысле более сложное, чем корень из двух, потому что Пи нельзя представить в виде корня из рационального числа. Но это уже немножко высший пилотаж.
Есть вопросы - пишите в комментарий.