Переформулировать теорему в импликативную форму, выделить структуру теоремы (разъяснительную часть, условие, заключение, простая/сложная), указать обратное теореме утверждения, противоположное, противоположное обратному). Теорема: Каждый член арифметической прогрессии, начиная со второго, является средним арифметическим предыдущего и последующего членов.
Пусть p – q = n, тогда p + q = n³.
2)
ответ: Нет.
Из условия следует, что f(x) = (x – a)(x – b), где a ≠ b.
Пусть искомый многочлен f(x) существует.
Тогда, очевидно f(f(x)) = (x – t1)²(x – t2)(x – t3).
Заметим, что t1, t2, t3 — корни уравнений f(x) = a и f(x) = b, при этом корни этих уравнений не совпадают, поэтому можно считать, что уравнение f(x) = a имеет один корень x = t1.
Рассмотрим уравнение f(f(f(x))) = 0. Его решения, очевидно, являются решениями уравнений f(f(x)) = a и f(f(x)) = b. Но уравнение f(f(x)) = a равносильно уравнению f(x) = t1 и имеет не более двух корней, а уравнение f(f(x)) = b — не более четырех корней (как уравнение четвертой степени).
То есть уравнение f(f(f(x))) = 0 имеет не более 6 корней.
Производная функции:
f'(x) = (2x · (3 - x) - (-1) · x²)/(3 - x)²
f'(x) = (6x - 2x² + x²)/(3 - x)²
f'(x) = (6x - x²)/(3 - x)²
f'(x) = x(6 - x)/(3 - x)²
Приравняем производную нулю с условием, что х≠3
Получим: х = 0 и х = 6
Поскольку функция у = 6x - x² квадратичная, то её график - парабола веточками вниз пересекает ось х в точках х1 = 0; и х2 = 6
В точке х1 = 0 производная меняет знак с - на +, следовательно, это точка минимума, а в точке х2 = 6 производная меняет знак с + на -. Следовательно, это точка максимума.
Найдём локальные минимум и максимум функции f(x) = x²/(3 - x)
При х1 = 0 f(x) min = 0
При х2 = 6 f(x) max = 12