Объяснение: 1) Задать формулой функцию, график которой проходит через точки А(1;1) и В(2;4). Решение : Уравнение прямой y=kx+b, Подставим в него вместо х и у координаты точек А и В, получим 2 уравнения: 1= k+b b и 4= 2k+b. Из первого уравнения b=1 - k, подставим во второе, получим 4= 2k+1-k ⇒k=3, b= 1-3=-2. Значит уравнение прямой у = 3х - 2.
2) Задать формулой функцию, график которой проходит через точки А(-12;-7) и В(15;2). Решение:равнение прямой y=kx+b, Подставим в него вместо х и у координаты точек А и В, получим 2 уравнения: -7 = -12k+b и 2 = 15k+b. Из второго уравнения b= 2-15k подставим в первое: -7 = -12k+2-15k ⇒ -9 = -27k ⇒k= 9/27=1/3 , тогда b= 2-15·1/3=2-5=-3. Уравнение прямой у= 1/3·х -3
№Задать формулой функцию, график которой проходит через точки А(-5;0) и В(12;-1). Решение аналогично: 0= -5k+b и -1 = 12k+b ⇒ k=1/17, b=5/17. Уравнение прямой у= 1/17·х +5/17
4)Задать формулой функцию, график которой проходит через точки А(0;3) и В(2;-1). Решение аналогично: 3= 0·k+b и -1= 2k+b ⇒b=3, k=(-1-b)/2=(-1-3)/2=-2 Уравнение прямой : у=-2х+3
Объяснение: 1) Задать формулой функцию, график которой проходит через точки А(1;1) и В(2;4). Решение : Уравнение прямой y=kx+b, Подставим в него вместо х и у координаты точек А и В, получим 2 уравнения: 1= k+b b и 4= 2k+b. Из первого уравнения b=1 - k, подставим во второе, получим 4= 2k+1-k ⇒k=3, b= 1-3=-2. Значит уравнение прямой у = 3х - 2.
2) Задать формулой функцию, график которой проходит через точки А(-12;-7) и В(15;2). Решение:равнение прямой y=kx+b, Подставим в него вместо х и у координаты точек А и В, получим 2 уравнения: -7 = -12k+b и 2 = 15k+b. Из второго уравнения b= 2-15k подставим в первое: -7 = -12k+2-15k ⇒ -9 = -27k ⇒k= 9/27=1/3 , тогда b= 2-15·1/3=2-5=-3. Уравнение прямой у= 1/3·х -3
№Задать формулой функцию, график которой проходит через точки А(-5;0) и В(12;-1). Решение аналогично: 0= -5k+b и -1 = 12k+b ⇒ k=1/17, b=5/17. Уравнение прямой у= 1/17·х +5/17
4)Задать формулой функцию, график которой проходит через точки А(0;3) и В(2;-1). Решение аналогично: 3= 0·k+b и -1= 2k+b ⇒b=3, k=(-1-b)/2=(-1-3)/2=-2 Уравнение прямой : у=-2х+3
S(1)=1, S(2)=1+3=4, S(3)=1+3+5=9, S(4)=1+3+5+7=16, S(5)=….=25,
Замечаем, что сумма первых n нечётных чисел натурального ряда равна n2 т.е. S(n)=n2. Докажем это м.м.и.
1) для n =1 формула верна.
2) предположим, что она верна для какого-нибудь натурального n=k , т.е. S(k)= k2.
Докажем , что тогда она будет верна и для n=k+1, т.е. S(k+1)=(k+1)2
S(k+1)=1+3+5+…+(2k-1)+(2k+1)=S(k)+(2k+1)=k2+2k+1=(k+1)2.
Следовательно, формула верна для всех натуральных значений n , т.е. S(n)=n2