1. Исследуйте функцию и постройте ее график y=x^3 - 3x^2 + 4 2. Найдите наибольшее и наименьшее значении функции на данном промежутке: f(x)=(x+1)^2 (x-1) [-2;0] .
y= x³ - 3x² + 4 1.Область определения функции D(f) = (-∞; ∞). 2. Определяем точки пересечения графики функции с координатными осями a) c осью абсцисс : y =0 ⇒ x³ - 3x² + 4 =0 , x = -1 корень (x³+x²) - (4x²+4x) +(4x+4) = 0 ; x²(x+1) -4x(x +1) +4(x +1) =0 ⇔(x+1)(x² - 4x+4) =0⇔(x+1)(x-2)² =0→ A(-1 ;0) ; B(2 ;0). b) с осью ординат: x =0 ⇒ y = 4 → C(0 ;4). 3.Определяем интервалы монотонности функции Функция возрастает (↑), если у ' >0, убывает(↓) , если у ' < 0. y ' =3x² -6x =3x(x-2) ; y ' + - + 0 2 y ↑ max ↓ min ↑
x =0 точка максимума _ мах (у) = 4 x =2 точка минимума _ min (у) = 2³ -3*2² +4 =0 Функция возрастает , если x ∈(-∞ ; 0) и x ∈(2 ;∞ ), убывает ,если x ∈ (0 ;2 ). --- 4) определим точки перегиба , интервалы выпуклости и вогнутости y '' = (y ') ' =(3x² -6x) ' = 6x -6=6(x -1). y '' =0 ⇒ x=1 (единственная точка перегиба) График функции выпуклая , если y ''< 0 , т.е. если x < 1 вогнутая, если y '' >0 ⇔ x > 1
5. Lim y → - ∞ ; Lim y → ∞ x→ - ∞ x→ ∞ * * * * * * * * * 2. Найдите наибольшее и наименьшее значении функции на данном промежутке: f(x)=(x+1)^2 (x-1) [-2;0]
f(x)=(x+1)² (x-1) f ' (x) =2(x+1)(x -1)+(x+1)² =(x+1)(2x-2+x+1) =3(x+1)(x -1/3) f'(x) + - + (-1) (1/3) (1/3) ∉ [-2 ;0] f(x) ↑ max ↓ min ↑
2, (1) = (21-2) / 9 = 19/9 , { щоб звернути періодичну дріб в звичайну, треба з числа , що стоїть до другого періоду (21) , відняти число, що стоїть до першого періоду (2), і записати цю різницю чисельником ; в знаменнику написати цифру 9 стільки разів, скільки цифр у періоді (1 цифра) , і після дев'яток дописати стільки нулів , скільки цифр між комою і першим періодом ( 0 цифр) } або нехай 2 , (1) = х , тоді : 100х = 211, (1) 10х = 21 , (1) 90х = 190, { віднімаємо від першого друге } х = 19/9
2. Найдите наибольшее и наименьшее значении функции на данном промежутке: f(x)=(x+1)^2 (x-1) [-2;0] .
y= x³ - 3x² + 4
1.Область определения функции D(f) = (-∞; ∞).
2. Определяем точки пересечения графики функции с координатными осями
a) c осью абсцисс : y =0 ⇒ x³ - 3x² + 4 =0 , x = -1 корень
(x³+x²) - (4x²+4x) +(4x+4) = 0 ;
x²(x+1) -4x(x +1) +4(x +1) =0 ⇔(x+1)(x² - 4x+4) =0⇔(x+1)(x-2)² =0→
A(-1 ;0) ; B(2 ;0).
b) с осью ординат: x =0 ⇒ y = 4 → C(0 ;4).
3.Определяем интервалы монотонности функции
Функция возрастает (↑), если у ' >0, убывает(↓) , если у ' < 0.
y ' =3x² -6x =3x(x-2) ;
y ' + - +
0 2
y ↑ max ↓ min ↑
x =0 точка максимума _ мах (у) = 4
x =2 точка минимума _ min (у) = 2³ -3*2² +4 =0
Функция возрастает , если x ∈(-∞ ; 0) и x ∈(2 ;∞ ),
убывает ,если x ∈ (0 ;2 ).
---
4)
определим точки перегиба , интервалы выпуклости и вогнутости
y '' = (y ') ' =(3x² -6x) ' = 6x -6=6(x -1).
y '' =0 ⇒ x=1 (единственная точка перегиба)
График функции выпуклая , если y ''< 0 , т.е. если x < 1
вогнутая, если y '' >0 ⇔ x > 1
5. Lim y → - ∞ ; Lim y → ∞
x→ - ∞ x→ ∞
* * * * * * * * *
2.
Найдите наибольшее и наименьшее значении функции на данном промежутке: f(x)=(x+1)^2 (x-1) [-2;0]
f(x)=(x+1)² (x-1)
f ' (x) =2(x+1)(x -1)+(x+1)² =(x+1)(2x-2+x+1) =3(x+1)(x -1/3)
f'(x) + - +
(-1) (1/3) (1/3) ∉ [-2 ;0]
f(x) ↑ max ↓ min ↑
f(-2) =(-2+1)²( -2-1) = -3 ;
f(-1) =(-1+1)²( -2-1) = 0 ;
f(0) =(0+1)²(0 -1) = -1 ;
наибольшее значении функции на данном промежутке: max f(x)=f(-1) =0 ;
наименьшее значении функции_minf(x)=f(-2) = -3 .