Примем всю работу за 1. Пусть вторая бригада выполнить работу за х часов, тогда первой потребуется х+5 часов. Первая бригада выполняет: раб./час. Вторая бригада выполняет: раб./час. Вместе две бригады выполняют: раб./час. Составим и решим уравнение: + = (умножим на 6х(х+5), чтобы избавиться от дробей) + = 6х+6*(х+5)=х(х+5) 6х+6х+30=х²+5х 12х+30-х²-5х=0 х²-7х-30=0 D=b²-4ac=(-7)²-4*1*(-30)=49+120=169 (√169=13) x₁= x₂= - не подходит, поскольку х<0 Значит, вторая бригада выполнит работу за 10 часов, а первая за х+5=10+5=15 часов. ОТВЕТ: первая бригада выполнит работу за 15 часов; вторая - за 10 часов.
1. Достраиваем исходный прямоугольный треугольник до прямоугольника. 2. Проводим вторую диагональ получившегося прямоугольника. 3. Получилось четыре одинаковых прямоугольных треугольника. 4. Разбиваем прямоугольник на четыре равных прямоугольника проводя параллельные прямые через точку пересечения диагоналей. 5. Получившиеся прямоугольники имеют наибольшую площадь так как в сумме дают полную площадь прямоугольника. 6. Площадь прямоугольника 8*5=40 см². 7. Площадь вписанного прямоугольника 40/4=10 см².
Первая бригада выполняет: раб./час.
Вторая бригада выполняет: раб./час.
Вместе две бригады выполняют: раб./час.
Составим и решим уравнение:
+ = (умножим на 6х(х+5), чтобы избавиться от дробей)
+ =
6х+6*(х+5)=х(х+5)
6х+6х+30=х²+5х
12х+30-х²-5х=0
х²-7х-30=0
D=b²-4ac=(-7)²-4*1*(-30)=49+120=169 (√169=13)
x₁=
x₂= - не подходит, поскольку х<0
Значит, вторая бригада выполнит работу за 10 часов, а первая за х+5=10+5=15 часов.
ОТВЕТ: первая бригада выполнит работу за 15 часов; вторая - за 10 часов.
2. Проводим вторую диагональ получившегося прямоугольника.
3. Получилось четыре одинаковых прямоугольных треугольника.
4. Разбиваем прямоугольник на четыре равных прямоугольника проводя параллельные прямые через точку пересечения диагоналей.
5. Получившиеся прямоугольники имеют наибольшую площадь так как в сумме дают полную площадь прямоугольника.
6. Площадь прямоугольника 8*5=40 см².
7. Площадь вписанного прямоугольника 40/4=10 см².