З = 2(a + b) = 18; a + b = 18: 2; a+b= 9; ⇒ a = 9 - b;
S= a * b; S = ( 9 - b) * b = 9 b - b^2 Получили функцию, графиком которой является парабола, ветви которой направлены вниз. У этой параболы самой высокой точкой будет вершина. Это точка максимума. Производная в этой точке равна 0. Найдем производную (9b - b^2)'= 9 - 2b; 9 - 2b = 0; 2 2 b = - 9; b = 4,5; ⇒ a = 9 - b = 9 = 4,5 = 4,5. Такая вот история, квадрат со стороной 4,5 имеет наибольшую площадь. Если Вы еще не проходили производные, то вершину параболы можно просто найти по формуле х0= - b / 2a. здесь вместо х берем и(это переменная). а и b это коэффициенты квадратного уравнения.
a + b = 18: 2;
a+b= 9; ⇒ a = 9 - b;
S= a * b;
S = ( 9 - b) * b = 9 b - b^2
Получили функцию, графиком которой является парабола, ветви которой направлены вниз. У этой параболы самой высокой точкой будет вершина. Это точка максимума. Производная в этой точке равна 0.
Найдем производную
(9b - b^2)'= 9 - 2b;
9 - 2b = 0;
2 2 b = - 9;
b = 4,5; ⇒ a = 9 - b = 9 = 4,5 = 4,5.
Такая вот история, квадрат со стороной 4,5 имеет наибольшую площадь.
Если Вы еще не проходили производные, то вершину параболы можно просто найти по формуле х0= - b / 2a. здесь вместо х берем и(это переменная). а и b это коэффициенты квадратного уравнения.