Объяснение:
1 . ( x² - x )/3 = ( 2x + 4 )/5 ; │X 15 2 . ( 2x² + x )/5 = ( 4x - 2 )/3 ;│X 15
5( x² - x ) = 3( 2x + 4 ) ; 3( 2x² + x ) = 5( 4x - 2 ) ;
5x² - 5x = 6x + 12 ; 6x² + 3x = 20x - 10 ;
5x² - 5x - 6x - 12 = 0 ; 6x² + 3x - 20x + 10 = 0 ;
5x² - 11x - 12 = 0 ; 6x² - 17x + 10 = 0 ;
D = 361 > 0 ; x₁ = - 0,8 ; x₂ = 3 . D = 49 > 0 ; x₁ = 5/6 ; x₂ = 12/13 .
3 . ( x² - x )/2 = 5 + 6x ;│X 2
x² - x = 10 + 12x ;
x² - x - 12x - 10 = 0 ;
x² - 13x - 10 = 0 ; D = 209 > 0 ; x₁= (13 - √209 )/2 ; x₂ = (13 - √209 )/2 .
Собственная скорость Vc= х км/ч.
Против течения :
t₁ = S/(Vc- Vт) = 18 / (x-3) (ч.)
По течению:
t₂= S/ (Vc+Vт) = 48/ (x+3) (ч.)
Всего:
t₁+t₂=3 (ч.)
18/(х-3) + 48/(х+3) = 3 |× (x-3)(x+3)
18(x+3) + 48(x-3) = 3(x-3)(x+3)
18x+54 + 48x - 144= 3(x²-9)
66x -90 = 3x² - 27 |÷3
22x - 30 = x²-9
x²-9 -22x+30=0
x²-22x+21=0
D= (-22)² -4*1*21 = 484-84=400 ; √D= 20
x₁= (22 -20) /2 =2/2=1 - не удовл. условию, т.к. скорость лодки не может быть меньше течения реки
x₂= (22+20)/2= 42/2=21 (км/ч) Vc
ответ: Vc= 21 км/ч.
Объяснение:
1 . ( x² - x )/3 = ( 2x + 4 )/5 ; │X 15 2 . ( 2x² + x )/5 = ( 4x - 2 )/3 ;│X 15
5( x² - x ) = 3( 2x + 4 ) ; 3( 2x² + x ) = 5( 4x - 2 ) ;
5x² - 5x = 6x + 12 ; 6x² + 3x = 20x - 10 ;
5x² - 5x - 6x - 12 = 0 ; 6x² + 3x - 20x + 10 = 0 ;
5x² - 11x - 12 = 0 ; 6x² - 17x + 10 = 0 ;
D = 361 > 0 ; x₁ = - 0,8 ; x₂ = 3 . D = 49 > 0 ; x₁ = 5/6 ; x₂ = 12/13 .
3 . ( x² - x )/2 = 5 + 6x ;│X 2
x² - x = 10 + 12x ;
x² - x - 12x - 10 = 0 ;
x² - 13x - 10 = 0 ; D = 209 > 0 ; x₁= (13 - √209 )/2 ; x₂ = (13 - √209 )/2 .
Объяснение:
Собственная скорость Vc= х км/ч.
Против течения :
t₁ = S/(Vc- Vт) = 18 / (x-3) (ч.)
По течению:
t₂= S/ (Vc+Vт) = 48/ (x+3) (ч.)
Всего:
t₁+t₂=3 (ч.)
18/(х-3) + 48/(х+3) = 3 |× (x-3)(x+3)
18(x+3) + 48(x-3) = 3(x-3)(x+3)
18x+54 + 48x - 144= 3(x²-9)
66x -90 = 3x² - 27 |÷3
22x - 30 = x²-9
x²-9 -22x+30=0
x²-22x+21=0
D= (-22)² -4*1*21 = 484-84=400 ; √D= 20
x₁= (22 -20) /2 =2/2=1 - не удовл. условию, т.к. скорость лодки не может быть меньше течения реки
x₂= (22+20)/2= 42/2=21 (км/ч) Vc
ответ: Vc= 21 км/ч.