решение достаточное легкое, прикрепляю фото, но еще и объясню на словах, чтобы было понятнее. На фото более краткий разбор, нужно только оформить, а этот текст просто чтобы понять что к чему и не запутаться)
Нам дан равнобедренный треугольник АВС, мы проводим высоту ВК, которая равна 67. Она отделяет два прямоугольных треугольника АВК и ВКС, тк нам нужно найти АВ, то мы будем рассматривать треугольник АВК. Угол АВК будет равен половине угла АВС, тк высота ВК делит угол В пополам. 120:2= 60. Угол ВКА равен 90 градусов, тк Вк высота. Сумма всех углов треугольника равна 180. складываем известные нам углы в треугольнике АВК, сумма которых равно 150. 180-150=30, делаем вывод что угол ВАК = 30 градусов. По свойству прямоугольного треугольника (Катет, лежащий против угла 30градусов, равен половине гипотенузы.) делаем вывод, что ВК равен половине АВ (ВК - катет, лежит напротив угла 30 гр, АВ - гипотенуза). Следовательно, гипотенуза АВ=2ВК. 67*2=134.
решение достаточное легкое, прикрепляю фото, но еще и объясню на словах, чтобы было понятнее. На фото более краткий разбор, нужно только оформить, а этот текст просто чтобы понять что к чему и не запутаться)
Нам дан равнобедренный треугольник АВС, мы проводим высоту ВК, которая равна 67. Она отделяет два прямоугольных треугольника АВК и ВКС, тк нам нужно найти АВ, то мы будем рассматривать треугольник АВК. Угол АВК будет равен половине угла АВС, тк высота ВК делит угол В пополам. 120:2= 60. Угол ВКА равен 90 градусов, тк Вк высота. Сумма всех углов треугольника равна 180. складываем известные нам углы в треугольнике АВК, сумма которых равно 150. 180-150=30, делаем вывод что угол ВАК = 30 градусов. По свойству прямоугольного треугольника (Катет, лежащий против угла 30градусов, равен половине гипотенузы.) делаем вывод, что ВК равен половине АВ (ВК - катет, лежит напротив угла 30 гр, АВ - гипотенуза). Следовательно, гипотенуза АВ=2ВК. 67*2=134.
АВ=134.
35a 2+7a 2b 2+5b+b 3 =
сгруппируем слагаемые скобками;
= (35a 2+7a 2b 2) + (5b+b 3) =
вынесем за скобки общий множитель первой,
а затем и второй группы;
= 7a 2 • (5+b 2) + b • (5+b 2) =
у нас получилось выражение из двух слагаемых, в каждом
из которых присутствует общий множитель (5+b 2),
который мы вынесем за скобку;
= (7a 2+b) • (5+b 2) .
Значит:
35a 2+7a 2b 2+5b+b 3 = (7a 2+b) (5+b 2) .
Разложим на множители ещё один многочлен :
10b 2a – 15b 2 – 8аb + 12b + 6а – 9 =
сгруппируем слагаемые скобками;
= (10b 2a – 15b 2) – (8аb – 12b) + (6а – 9) =
вынесем за скобки общий множитель первой,
а затем второй и третьей группы;
= 5b 2 • (2a – 3) – 4b • (2а – 3) + 3 • (2а – 3) =
у нас получилось выражение из трех слагаемых, в каждом
из которых присутствует общий множитель (2а – 3),
который мы вынесем за скобку;
= (5b 2 – 4b + 3) • (2a – 3) .