Первый член последовательности а1=13, а каждый следующий на 5 меньше предыдущего. Найдите шестой член данной последовательности. В ответе укажите только число без пробелов. Если получится отрицательное число, то пробела между знаком и числом не ставить.
1) При x ≥ 9 значения функции y = -5x - 3 не больше -48.
2) При x > -4 значения функции y = -3/4 *x - 1 меньше 2.
Объяснение:
Рисунки прилагаются.
1) y = -5x - 3 линейная функция, график прямая линия, пересекает ось OY в точке (0; --3).
Выберем еще одну точку и построим график функции: x = 10; y = -50-3 = -53.
При каких значениях x значения функции не больше (значит меньше или равно) -48?
Построим в этой же системе координат прямую y = -48.
По графикам видно, что что -5x - 3 ≤ -48 при x ≥ 9
Проверим аналитически:
-5x -3 ≤ -48; -5x ≤ -48 +3; -5x ≤ -45; x ≥ 9.
2) y = -3/4*x - 3 = -0,75x - 1 линейная функция, график прямая линия, пересекает ось OY в точке (0; -1).
Выберем еще одну точку и построим график функции: x = 4;
y = -0,75*4 -1 = -3 - 1 = -4.
При каких значениях x значения функции меньше 2?
Построим в этой же системе координат прямую y = 2.
По графикам видно, что -0,75x - 1 ≤ -2 при x > -4
Проверим аналитически:
-0,75x -1 < 2; -0,75x < 3; x > -4.
Смотри решение.
Объяснение:
решения (через дискриминант):
Порядок решения:
а. Записываем уравнение в исходном виде;
б. Находим дискриминант (дискриминант должен получиться больше 0 (2 корня уравнения), или равным 0 (1 корень уравнения), если дискриминант меньше 0, то уравнение не имеет корней, и дальше его нет смысла решать);
в. Находим корни уравнения, при условии того, что написано в предыдущем пункте.
решения (через теорему Виетта):
Сумма 2 корней уравнения равняется коэффициенту b, взятому с противоположным знаком.
Произведение 2 корней уравнения равняется свободному коэффициенту в данном уравнении.
Общая формула квадратного уравнения: (для справок).
Теперь переходим к решению данного квадратного уравнения: