Петрик хоче написати на дошці 55 різноманітних двохзначних чисел так, щоб серед них не було двох чисел, що дадуть в сумі 100. Чи зможить він це зробити?
Образовательная: формирование умений доказательства неравенств, формирование
Этапы занятия:
Организационный момент.
Актуализация опорных занятий.
Усвоение новых знаний и действий.
Первичное закрепление знаний и действий.
Контроль и самопроверка знаний, рефлексия.
Подведение итогов занятий.
ХОД ЗАНЯТИЯ
1. Организационный момент. Подготовка учащихся к работе на занятии.
2. Подготовка к основному этапу. Обеспечение мотивации, значимости изучаемой темы занятия и принятия учащимися учебно-познавательной деятельности, актуализация опорных знаний.
а) С неравенств сравниваются большие и малые величины;
b) Во С какого приема мы умеем доказывать неравенство вида aответ:
- Один из приемов доказательства неравенства ab) сводят к доказательству равносильного ему неравенства a-b<0 (a-b>0);
c) Повторим данное доказательство на примере неравенства Коши.
“Среднее арифметическое неотрицательных чисел не меньше их среднего геометрического”:

Доказать: 
Доказательство: Рассмотрим разность левой и правой частей неравенства:

Неотрицательность квадрата любого вещественного числа очевидна.
Значит,  – верное неравенство.
3.
a) Во Попробуем сформулировать другой прием.
ответ (учитель ответить на во Другой прием состоит в том, чтобы показать, что данное неравенство является следствием некоторого очевидного неравенства:
(a-b)2  0, (a+b)2  0 или неравенства Коши  , при а0, b0, выражающее соотношение между средним арифметическим и средним геометрическим двух неотрицательных чисел;
b) Докажем, что (a+b)(ab+1)  4ab, при а0, b0.
Доказательство: Рассмотрим a+b и ab+1.
Используем очевидное неравенство Коши:

второго множителя.

Перемножим получившиеся неравенства:

с) Так же используют следующий прием: предполагают, что данное неравенство верно при заданных значениях переменных, строят цепочку неравенств-следствий, приводящую к некоторому очевидному неравенству. Рассматривая затем эту цепочку неравенств снизу вверх, показывают, что данное неравенство является следствием полученного очевидного неравенства и потому верно при указанных значениях переменных.
Значит, доказательство (a+b)·(ab+1)  4ab, при а0, b0 можно выполнить другим Допустим, что при а0, b0 данное неравенство верно, т.е.:

Используя неравенство Коши дважды для каждого множителя, имеем:

Значит, (a+b)·(ab+1)  4ab, при а0, b0, что и требовалось доказать.
4. Докажем: 
Доказательство: Допустим, что данное неравенство верно.

Получили очевидное неравенство.
Значит, данное неравенство  верно.
Во Мы можем привести доказательство данного неравенства из очевидного неравенства (a+b-2)2  0?
ответ: Да, для этого сделаем обратные шаги (рассказать по готовой записи)
1) =0,4х-1+6х+3,6=6,4х+2,6, если х = 0,4, то 6,4*0,4+2,6=5,16
2) =1,5х-1+2,8-4,2х=1,8-2,7х, при х= -0,2 1,8-2,7*(-0,2)= 1,8+0,54=2,34
3)=1,2х-1,8+3,6х-5,4=4,8х-7,2, при х=-0,1 4,8*(-0,1)-7,2=-0,48-7,2=-7,68
4)5-2(3х-4)=4х-3 5)3-4(2х-5)=2-6х 6)6-3 (2х-5)=2х-7
5-6х+8=4х-3 3-8х+20=2-6х 6-6х+15=2х-7
16=10х 21=2х 28=8х
х=1,6 х=10,5 х=3,5
7)9-2(3х-4)=3х+8 8)11+4 (х-3)=9х- 15
9-6х+8=3х+8 11+4х-12= 9х-15
9=9х 14=5х
х=1 х=2,8
План-конспект урока
Алгебра
8 класс
Тема: Доказательство неравенств
Цель:
Образовательная: формирование умений доказательства неравенств, формирование
Этапы занятия:
Организационный момент.
Актуализация опорных занятий.
Усвоение новых знаний и действий.
Первичное закрепление знаний и действий.
Контроль и самопроверка знаний, рефлексия.
Подведение итогов занятий.
ХОД ЗАНЯТИЯ
1. Организационный момент. Подготовка учащихся к работе на занятии.
2. Подготовка к основному этапу. Обеспечение мотивации, значимости изучаемой темы занятия и принятия учащимися учебно-познавательной деятельности, актуализация опорных знаний.
а) С неравенств сравниваются большие и малые величины;
b) Во С какого приема мы умеем доказывать неравенство вида aответ:
- Один из приемов доказательства неравенства ab) сводят к доказательству равносильного ему неравенства a-b<0 (a-b>0);
c) Повторим данное доказательство на примере неравенства Коши.
“Среднее арифметическое неотрицательных чисел не меньше их среднего геометрического”:

Доказать: 
Доказательство: Рассмотрим разность левой и правой частей неравенства:

Неотрицательность квадрата любого вещественного числа очевидна.
Значит,  – верное неравенство.
3.
a) Во Попробуем сформулировать другой прием.
ответ (учитель ответить на во Другой прием состоит в том, чтобы показать, что данное неравенство является следствием некоторого очевидного неравенства:
(a-b)2  0, (a+b)2  0 или неравенства Коши  , при а0, b0, выражающее соотношение между средним арифметическим и средним геометрическим двух неотрицательных чисел;
b) Докажем, что (a+b)(ab+1)  4ab, при а0, b0.
Доказательство: Рассмотрим a+b и ab+1.
Используем очевидное неравенство Коши:

второго множителя.

Перемножим получившиеся неравенства:

с) Так же используют следующий прием: предполагают, что данное неравенство верно при заданных значениях переменных, строят цепочку неравенств-следствий, приводящую к некоторому очевидному неравенству. Рассматривая затем эту цепочку неравенств снизу вверх, показывают, что данное неравенство является следствием полученного очевидного неравенства и потому верно при указанных значениях переменных.
Значит, доказательство (a+b)·(ab+1)  4ab, при а0, b0 можно выполнить другим Допустим, что при а0, b0 данное неравенство верно, т.е.:

Используя неравенство Коши дважды для каждого множителя, имеем:

Значит, (a+b)·(ab+1)  4ab, при а0, b0, что и требовалось доказать.
4. Докажем: 
Доказательство: Допустим, что данное неравенство верно.

Получили очевидное неравенство.
Значит, данное неравенство  верно.
Во Мы можем привести доказательство данного неравенства из очевидного неравенства (a+b-2)2  0?
ответ: Да, для этого сделаем обратные шаги (рассказать по готовой записи)
Объяснение:
как то так, неуверен