Приводим дроби к общему знаменателю. Общий знаменатель 2x·(х-3)·(х-3)·(х+3) Первую дробь умножаем на 2x·(х-3), вторую дробь на 2x·(х+3), третью дробь на (х-3)² Получим:
Дробь равна нулю тогда и только тогда, когда числитель равен 0, а знаменатель отличен от 0. Приравниваем к нулю числитель 6x² - 18x - 2x² -6x-3x²+18x-27=0, x² - 6x - 27 = 0 D=(-6)² - 4·(-27)=36+108 =144 = 12² x₁=(6-12)/2=-3 или х₂=(6+12)/2=9 Так как знаменатель не должен быть равным нулю, то это означает, что х≠0, х≠3, х≠ -3 Поэтому х₁ = - 3 не является корнем уравнения ответ. х=9
Вероятность того, что к концу дня в каждом одном автомате закончится кофе, равна 0,4. Значит вероятность того, что кофе НЕ ЗАКОНЧИТСЯ 1-0,4=0,6
Вероятность того, что кофе закончится в обоих автоматах, равна 0,23. значит Вероятность того что кофе НЕ ЗАКОНЧИТСЯ в обоих автоматах 1-0,23=0,77
Два этих события совместные (Два события называются совместными, если появление одного из них не исключает появления другого, т.е. если кофе закончится в одном автомате то это не исключает возможность того, что кофе закончится и в другом автомате)
Так как события совместные, вероятность суммы двух совместных событий равна сумме вероятностей этих событий, уменьшенной на вероятность их произведения Значит Вероятность того что кофе не закончится
Приводим дроби к общему знаменателю.
Общий знаменатель
2x·(х-3)·(х-3)·(х+3)
Первую дробь умножаем на 2x·(х-3), вторую дробь на 2x·(х+3), третью дробь на (х-3)²
Получим:
Дробь равна нулю тогда и только тогда, когда числитель равен 0, а знаменатель отличен от 0.
Приравниваем к нулю числитель
6x² - 18x - 2x² -6x-3x²+18x-27=0,
x² - 6x - 27 = 0
D=(-6)² - 4·(-27)=36+108 =144 = 12²
x₁=(6-12)/2=-3 или х₂=(6+12)/2=9
Так как знаменатель не должен быть равным нулю, то это означает, что
х≠0, х≠3, х≠ -3
Поэтому х₁ = - 3 не является корнем уравнения
ответ. х=9
Значит вероятность того, что кофе НЕ ЗАКОНЧИТСЯ
1-0,4=0,6
Вероятность того, что кофе закончится в обоих автоматах, равна 0,23.
значит Вероятность того что кофе НЕ ЗАКОНЧИТСЯ в обоих автоматах
1-0,23=0,77
Два этих события совместные (Два события называются совместными, если появление одного из них не исключает появления другого, т.е. если кофе закончится в одном автомате то это не исключает возможность того, что кофе закончится и в другом автомате)
Так как события совместные, вероятность суммы двух совместных событий равна сумме вероятностей этих событий, уменьшенной на вероятность их произведения
Значит Вероятность того что кофе не закончится
ИЛИ