Площадь прямоугольника равна 1. Какую площадь имеет треугольник, получившийся при проведении прямой через середины смежных сторон прямоугольника? Укажите правильный ответ. 1/8 1/4, 1/3, 1/2
2. y=0 при х=0 из этого следует что начало координат принадлежит графику функции; y>0 при x>0, а значит график располагается в первой координатной четверти (первом координатном угле)
3. Функция возрастает на луче [0;+∞); Другими словами на этом луче, большему значению аргумента, соответствует большее значение функции.
4. Функция имеет наименьшее значение, и не имеет наибольшего значения. Данное значение достигается тогда, когда х=0;
5. Функция непрерывна.
6. Функция выпукла вверх.
7. Область значений функции y=√x является луч [0;+∞)
Следует отметить, что график функции y=√x симметричен относительно оси симметрии у=х с графиком функции y=x^2, при x>0.
2a^2 - 3b) * (a^2 + 2ab + 5b^2) = 2a^4 + 4a^3 * b + 10a^2 * b^2 - 3a^2 * b - 6ab^2 - 15b^3;
2) (x^2 - 2xy) * (x^2 - 5xy + 3y^2) = x^4 - 5x^3 * y + 3x^2 * y^2 - 2x^3 * y + 10x^2 * y^2 - 6xy^3 = x^4 - 7x^3 * y + 13x^2 * y^2 - 6xy^3;
3) (x - y) * (x^3 + x^2 * y + x * y^2 + y^3) = x^4 + x^3 * y + x^2 * y^2 + xy^3 - x^3 * y - x^2 * y^2 - xy^3 - y^4 = x^4 - y^4;
4) (a + b) * (a^3 - a^2 * b + a * b^2 - b^3) = a^4 - a^3 * b + a^2 * b^2 - ab^3 + a^3 * b - a^2 * b^2 + ab^3 - b^4 = a^4 - b^4;
5) (5a - 4b) * (a^3 + 2a^2 * b - 5a * b^2 - 3b^3) = 5a^4 + 10a^3 * b - 25a^2 * b^2 - 15ab^3 - 4a^3 * b - 8a^2 * b^2 + 20ab^3 + 12b^4 = 5a^4 + 6a^3 * b - 33a^2 * b^2 + 5ab^3 + 12b^4;
6) (2x + 3y) * (x^3 + 3x^2 * y - 3x * y^2 + 4y^3) = 2x^4 + 6x^3 * y - 6x^2 * y^2 + 8xy^3 + 3x^3 * y + 9x^2 * y^2 - 9xy^3 + 12y^4 = 2x^4 + 9x^3 * y + 3x^2 * y^2 - xy^3 + 12y^4.
Объяснение:
если модешь сделай лутшим ответом
1.Область определения функции явяется луч [0;+∞);
2. y=0 при х=0 из этого следует что начало координат принадлежит графику функции; y>0 при x>0, а значит график располагается в первой координатной четверти (первом координатном угле)
3. Функция возрастает на луче [0;+∞); Другими словами на этом луче, большему значению аргумента, соответствует большее значение функции.
4. Функция имеет наименьшее значение, и не имеет наибольшего значения. Данное значение достигается тогда, когда х=0;
5. Функция непрерывна.
6. Функция выпукла вверх.
7. Область значений функции y=√x является луч [0;+∞)
Следует отметить, что график функции y=√x симметричен относительно оси симметрии у=х с графиком функции y=x^2, при x>0.