По условию имеем: a₁+a₅=26 a₂*a₄=160 Распишем 2й, 4й и 5й члены прогрессии через a₁: a₂=a₁+d a₄=a₁+3d a₅=a₁+4d Выполним подстановку в первое равенство: a₁+(a₁+4d)=26 2a₁+4d=26 упростим, т.е. разделим обе части равенства на 2: a₁+2d=13 Далее, выполним подстановку во второе равенство: (a₁+d)*(a₁+3d)=160 Для сокращения расчетов во второй скобке распишем выражение: (a₁+d)*((a₁+2d)+d)=160 Из первого равенства было получено, что a₁+2d=13. Подставим это значение во вторую скобку, получим: (a₁+d)*(13+d)=160 Выразим a₁ из первого равенства: a₁=13-2d и подставим в последнее равенство: (13-2d+d)*(13+d)=160 (13-d)(13+d)=160 Произведение в левой части равенства свернем по формуле разности квадратов:
13²-d²=160
169-d²=160
d²=9
d=3
a₁=13-2d
a₁=13-2*3
a₁=13-6
a₁=7
Далее по формуле суммы первых n членов прогрессии находим:
б) (b₁ + b₂ + b₃)/3 = 14/3, ⇒b₁ + b₂ + b₃ = 14, ⇒b₁ + b₁q + b₁q² = 14,⇒
⇒b₁ + b₁q² = 10
Получили систему двух уравнений с 2-мя переменными:
b₁q = 4
b₁ + b₁q² = 10
решаем:
b₁ + b₁q*q = 10, ⇒ b₁ + 4q = 10, ⇒b₁ = 10 - 4q
Это наша подстановка.
подставим в 1-е уравнение.
b₁q = 4, ⇒ (10 - 4q)*q = 4, ⇒ 10q -4q² = 4, ⇒ 4q² -10q +4 = 0,⇒
⇒ 2q² -5q +2 = 0. Решаем D = 25 -16 = 9
q = (5 +-3)/4
q₁= 2, q₁= 1/2
а) q₁= 2, ⇒b₁ = 10 - 4q = 10 - 8 = 2, S₅ = b₁(q⁵-1)/(q -1) = 2*31+1 = 62
б) q₂ = 1/2, ⇒b₁ = 10 -4q = 10 - 4*1/2 = 8, S₅ = 8(1/32 - 1)/(-1/2) = 15,5
По условию имеем:
a₁+a₅=26
a₂*a₄=160
Распишем 2й, 4й и 5й члены прогрессии через a₁:
a₂=a₁+d
a₄=a₁+3d
a₅=a₁+4d
Выполним подстановку в первое равенство:
a₁+(a₁+4d)=26
2a₁+4d=26
упростим, т.е. разделим обе части равенства на 2:
a₁+2d=13
Далее, выполним подстановку во второе равенство:
(a₁+d)*(a₁+3d)=160
Для сокращения расчетов во второй скобке распишем выражение:
(a₁+d)*((a₁+2d)+d)=160
Из первого равенства было получено, что a₁+2d=13. Подставим это значение во вторую скобку, получим:
(a₁+d)*(13+d)=160
Выразим a₁ из первого равенства:
a₁=13-2d и подставим в последнее равенство:
(13-2d+d)*(13+d)=160
(13-d)(13+d)=160
Произведение в левой части равенства свернем по формуле разности квадратов:
13²-d²=160
169-d²=160
d²=9
d=3
a₁=13-2d
a₁=13-2*3
a₁=13-6
a₁=7
Далее по формуле суммы первых n членов прогрессии находим:
Sn=(2*a₁+(n-1)*d)/2*n
S₆=(2*7+5*3)/2*6
S₆=(14+15)/2*6
S₆=29/2*6
S₆=29*3
S₆=87