Площадь прямоугольного участка земли равна (х2 - 9х + 14 = 0) м2. а) х2 - 9х + 14 = 0 = (х + а) (х + b) б) Пусть (х + а) м – длина участка, а (х + b)м – его ширина. Запишите, чему равен периметр участка, используя полученные значения а и b.
Весь план они вдвоем выполнили за 4/0,9 = 40/9 дня. За 1 день они вдвоем выполняли по 9/40 части плана. 1 рабочий выполнит его за x дней, по 1/х части в день. 2 рабочий выполнит его за (x+2) дней, по 1/(х+2) части в день. 1/x + 1/(x+2) = 9/40 Умножаем все на 40x(x+2) 40(x+2) + 40x = 9x(x+2) 40x + 80 + 40x = 9x^2 + 18x 9x^2 - 62x - 80 = 0 D = 62^2 + 4*9*80 = 3844 + 2880 = 6724 = 82^2 x1 = (62 - 82)/18 = -10/18 < 0 x2 = (62 + 82)/18 = 144/18 = 8 x = 8 - за это время 1 рабочий сделает весь план. x+2 = 10 - за это время 2 рабочий сделает весь план.
-3.
Объяснение:
√(6 -2√5) - √(9+4√5) =
Заметтм, что каждое подкоренное выражение можно представить в виде квадрата суммы или разности:
6 -2√5 = 5 -2√5 + 1 = (√5)^2 -2•√5•1 + 1^2 =
(√5 -1)^2.
9 + 4√5 = 5 + 4√5 + 4 = (√5)^2 + 2•√5•2 + 2^2 =
(√5 + 2)^2.
Именно поэтому решение запишется так:
√(6 -2√5) - √(9+4√5) = √(√5 -1)^2 - √(√5 + 2)^2 = l√5 - 1l - l√5 + 2l
Выражения, записанные под знаком модуля положительные, знак модуля опускаем, не меняя знаки слагаемых в скобках:
(√5 - 1) - (√5 + 2) =
Упрощаем получившееся выражение:
√5 - 1 - √5 - 2 = -1 -2 = -3.
ответ: -3.
Использованные тождества:
а^2 - 2аb + b^2 = (a-b)^2;
а^2 + 2аb + b^2 = (a+b)^2;
√(a)^2 = lal.
За 1 день они вдвоем выполняли по 9/40 части плана.
1 рабочий выполнит его за x дней, по 1/х части в день.
2 рабочий выполнит его за (x+2) дней, по 1/(х+2) части в день.
1/x + 1/(x+2) = 9/40
Умножаем все на 40x(x+2)
40(x+2) + 40x = 9x(x+2)
40x + 80 + 40x = 9x^2 + 18x
9x^2 - 62x - 80 = 0
D = 62^2 + 4*9*80 = 3844 + 2880 = 6724 = 82^2
x1 = (62 - 82)/18 = -10/18 < 0
x2 = (62 + 82)/18 = 144/18 = 8
x = 8 - за это время 1 рабочий сделает весь план.
x+2 = 10 - за это время 2 рабочий сделает весь план.