Пусть момент прихода юноши - это x, момент прихода девушки - y. При этом 0 соответствует 12 часам дня, а 1 - 12:05 и так далее до 12, соответствуещего 13:00. На координатной плоскости множество всех возможных событий - это квадрат, заданный условиями . Теперь найдем, каким точкам соответствует событие "встреча состоялась". Дополнительно ко всему нижеследующему налагается условие, что точки вне квадрата не рассматриваются. 1) Условие того, что девушка не уйдет раньше прихода юноши: . Заметим, что условие также выполняется, если юноша приходит первым, т.к. тогда правая часть отрицательна. 2) Аналогично рассматриваем условие, что юноша не уйдет раньше: .
Оба условия должны выполняться одновременно, поэтому фигура, составленная из точек, для которых встреча происходит - это промежуток между прямыми y=x-1; y=x+6, на рисунке отмечена синим. Искомая вероятность равна отношению площади этой фигуры к площади квадрата. Это отношение можно искать по-разному, ответ получается .
1) 18 - 16х = -30х - 10, 2) -7х + 2 = 3х - 1, 3) 10 - 2х = 12 - х,
-16х + 30х = -10 - 18, -7х - 3х = -1 - 2, -2х + х = 12 - 10,
14х = -28, -10х = -3, -х = 2,
х = -28 : 14, х = -3 : (-10), х = -2;
х = -2; х = 0,3;
4) 6х - 19 = -2х - 15, 5) 0,2х + 3,4 = 0,6х - 2,6, 6) 5/6х + 12 = 1/4х - 2,
6х + 2х = -15 + 19, 0,2х - 0,6х = -2,6 - 3,4, 12(5/6х + 12) = 12(1/4х - 2),
8х = 4, -0,4х = -6, 10х + 144 = 3х - 24,
х = 4 : 8, х = -6 : (-0,4), 10х - 3х = -24 - 144,
х = 0,5; х = 15; 7х = -168,
х = -168 : 7,
х = -24.
1) Условие того, что девушка не уйдет раньше прихода юноши: . Заметим, что условие также выполняется, если юноша приходит первым, т.к. тогда правая часть отрицательна.
2) Аналогично рассматриваем условие, что юноша не уйдет раньше: .
Оба условия должны выполняться одновременно, поэтому фигура, составленная из точек, для которых встреча происходит - это промежуток между прямыми y=x-1; y=x+6, на рисунке отмечена синим. Искомая вероятность равна отношению площади этой фигуры к площади квадрата. Это отношение можно искать по-разному, ответ получается .