Y(x)=x²+4, х₀=1, k=4 угловой коэффициент касательной к функции равен значению производной функции в точке касания, т.е. k=y'(x₀) 1) найдем производную: y'(x)=(x²+4)'=2x k=y'(x₀)=y'(1)=2*1=2 - угловой коэффициент касательной к графику функции в точке с абсциссой x₀=1 2) теперь известен угловой коэффициент k=4, но неизвестна точка касания x₀, т.е. y'(x₀)=k 2*x₀=4 x₀=2 чтобы найти ординату точки, подставим x₀ в функцию y(x): y₀=y(x₀)=2²+4=4+4=8 (2;4) - координаты точки, в которой угловой коэффициент касания равен k=4 3) уравнение касательной в общем виде: f(x)=y(x₀)+y'(x₀)*(x-x₀) x₀=1, y'(x₀)=2 - найдено выше под 1) y(x₀)=1²+4=5 подставляем найденные значения в общий вид: f(x)=5+2(x-1)=5+2x-2=2x+3 - уравнение касательной к графику функции в точке с абсциссой x₀=1
угловой коэффициент касательной к функции равен значению производной функции в точке касания, т.е. k=y'(x₀)
1) найдем производную:
y'(x)=(x²+4)'=2x
k=y'(x₀)=y'(1)=2*1=2 - угловой коэффициент касательной к графику функции в точке с абсциссой x₀=1
2) теперь известен угловой коэффициент k=4, но неизвестна точка касания x₀, т.е.
y'(x₀)=k
2*x₀=4
x₀=2
чтобы найти ординату точки, подставим x₀ в функцию y(x):
y₀=y(x₀)=2²+4=4+4=8
(2;4) - координаты точки, в которой угловой коэффициент касания равен k=4
3) уравнение касательной в общем виде: f(x)=y(x₀)+y'(x₀)*(x-x₀)
x₀=1, y'(x₀)=2 - найдено выше под 1)
y(x₀)=1²+4=5
подставляем найденные значения в общий вид:
f(x)=5+2(x-1)=5+2x-2=2x+3 - уравнение касательной к графику функции в точке с абсциссой x₀=1
Объяснение:
1). (x+3)(2-x)/x+6≥0 Умножим обе стороны неравенства на x+6 и получим (x+3)(2-x)≥0. Отсюда (x+3)≥0 и (2-x)≥0. Тогда x≥-3 и x≤2
2). 2х²+7х+5>0 Приравняем данное неравенство к равенству.
2х²+7х+5 = 0
D=-7²-4·2·5 = 49-40 = √9 = 3²
x1= (-7+3)/2·2 = -4/4 = -1
x2= (-7-3)/4 = - 2,5
3). (x-2)²(x²+6x-9)<0
(x-2)²<0 и (x²+6x-9)<0
Решим сначала (x-2)²<0
= x²-2·2·x+2²<0 = x²-4x+4<0 Приравняем данное неравенство к нолю и получим x²-4x+4=0
D=-4+²-4·1·4=16-16+ = √0 = 0
x1 = (4+0)/2·1= 4/2 = 2
x2 = (4-0)/2·1= 4/2 = 2
Теперь решим (x²+6x-9)<0. Приравняем данное неравенство к нолю и получим x²+6x-9=0
D= 6²-4·1·(-9) = 36+36 = √72
x1 = (-6+√72)/2 = -3+(√72/2)
x2 = (-6-√72)/2 = -3-(√72/2)
4). x²-5x+4/x³-64>0 Умножим обе стороны неравенства на x³-64 и получим: x²-5x+4>0. Приравняем данное неравенство к нолю.
x²-5x+4=0
D=-5²-4·1·4 = 25-16 = √9 = 3²
x1= (5+3)0/2= 8/2= 4
x2= (5-3)/2 = 2/2 = 1
5). (x-2)(2+x)(5-x)≤0 Отсюда (x-2)≤0 (2+x)≤0 (5-x)≤0
Тогда: x≤2, x≤-2 и x≥5