По ( COP за 1 четверть (1-вариант) 10 1. Решите систему уравнений графическим . 2х + y = 3 2 - y = -1 (3) Решите систему уравнений методом подстановки: - y = 1 2 - 2y = 26 о 3. Решите задачу с системы уравнений. Пое рабочих, работая вместе, выполняют задание за 3 ч 45 мин. Первый рабочий, работа опен, может выполнить задание на 4 ч быстрее, чем второй рабочий. Сколько времени потребуется каждому рабочему для выполнения этого задания? (3) д 1. а) Покажите на координатной плоскости множество решений неравенства 3x-2. Какая з точек: A (3; 5) или В (-3;-2), принадлежит множеству решений неравенства ушта а? (3). ответ на фото 3. 4 задание
чтобы наибольшее значение данной функции было не меньше 1, необходимо и достаточно, чтобы она в какой-то точке приняла значение 1.
если наибольшее значение функции не меньше единицы, то по непрерывности в какой-то точке будет значение единица. если же наибольшее значение меньше единицы, то значение единица приниматься не может. значит нужно найти при каких значениях a есть корни у уравнения |x - a| = x² + 1
так как x² + 1 > 0 , то уравнение равносильно совокупности :
(6x-1)²-(3-8x)(3+8x)-(10x+1)²=0
(6x-1)²+(8x-3)(8x+3)-(10x+1)²=0
(36x²-12x+1)+(8x-3)(8x+3)-(100x²+20x+1)=0
(36x²-12x+1)+(64x²-9)-(100x²+20x+1)=0
36x²-12x+1+64x²-9-100x²-20x-1=0
-32x-9=0
-32x=9
32x=-9
x=(-9)÷32
x=-9/32
5(x+2)^2+(2x-1)^2-9(x+3)(x-3)=22
5(x+2)²+(2x-1)²-9(x+3)(x-3)-22=0
5(x²+4x+4)+(4x²-4x+1)-9(x+3)(x-3)-22=0
(5x²+20x+20)+(4x²-4x+1)-(9x+1)-(9x+27)(x-3)-22=0
(5x²+20x+20)+(4x²-4x+1)-(9x²-27x+27x-81)-22=0
(5x²+20x+20)+(4x²-4x+1)-(9x²-81)-22=0
5x²+20x+20+4x²-4x+1-9x²+81-22=0
16x+80=0
16x=-80
x=(-80)÷16
x=-5
чтобы наибольшее значение данной функции было не меньше 1, необходимо и достаточно, чтобы она в какой-то точке приняла значение 1.
если наибольшее значение функции не меньше единицы, то по непрерывности в какой-то точке будет значение единица. если же наибольшее значение меньше единицы, то значение единица приниматься не может. значит нужно найти при каких значениях a есть корни у уравнения |x - a| = x² + 1
так как x² + 1 > 0 , то уравнение равносильно совокупности :
эта совокупность имеет решение, если: