У нас известно отношение y к x: y/x=-3; Возведем в квадрат, нам это нужно, чтобы найти значение выражения: (y/x)^2=9; Возьмем числитель нашего примера: 3y^2-2xy+x^2; Поделим каждое слагаемое на x^2, чтобы перейти к нашему отношению, сказанному выше. 3*9(-2)*(-3)+1=27+6+1=34. (Минус на минус дают плюс). Теперь разберем знаменатель: x^2+xy-y^2; Так же используя отношение, приведенное выше. Делим все на x^2. 1+(-3)-9=1-3-9=-11. Теперь совместим в нашу дробь и числитель, и знаменатель , получим: -34/11, что соответствует - 3 целым 1/11.
а) 4x² - 4x - 15 < 0
D = b² - 4ac = 16 + 4*4*15 = 16 + 240 = 256
x₁ = (-b + √D) / 2a = (4 + 16) / 8 = 20 / 8 = 2,5
x₂ = (-b - √D) / 2a = (4 - 16) / 8 = -12 / 8 = -1,5
(x - 2,5)(х + 1,5) < 0
{ x < 2,5
{ x < -1,5
ответ: (-1,5; 2,5)
б) x² - 81 > 0
(x - 9)(x + 9) > 0
{ x > -9
{ x > 9
ответ: (-9; 9)
в) x² < 1,7х
x² - 1,7х < 0
х(x - 1,7) < 0
{ x < 0
{ x < 1,7
ответ: (0; 1,7)
г) x( x + 3) - 6 < 3 (x + 1)
x² + 3x - 6 - 3x - 3 < 0
x² - 9 < 0
(x - 3)(x + 3) < 0
{ x < -3
{ x < 3
ответ: (-3; 3)
У нас известно отношение y к x:
y/x=-3;
Возведем в квадрат, нам это нужно, чтобы найти значение выражения:
(y/x)^2=9;
Возьмем числитель нашего примера:
3y^2-2xy+x^2;
Поделим каждое слагаемое на x^2, чтобы перейти к нашему отношению, сказанному выше.
3*9(-2)*(-3)+1=27+6+1=34. (Минус на минус дают плюс).
Теперь разберем знаменатель:
x^2+xy-y^2; Так же используя отношение, приведенное выше.
Делим все на x^2.
1+(-3)-9=1-3-9=-11.
Теперь совместим в нашу дробь и числитель, и знаменатель , получим:
-34/11, что соответствует - 3 целым 1/11.
ответ: -34/11.