1) любые 2) любые 5) x ∈ (-∞;-6) ∪ (-6;6) ∪ (6;+∞) 6) любые 9) x ∈ (-∞;-5) ∪ (-5;+∞) 10) с ∈ (-∞;-4) ∪ (-4;3) ∪ (3;+∞)
Объяснение:
Дробь имеет смысл, если знаменатель не равен нулю.
Значит задача состоит в том, что мы должны найти значения икса, при которых знаменатель обращается в нуль.
1) знаменатель = 1 -> имеет смысл всегда
2) знаменатель = 7 -> имеет смысл всегда
5) x^2 - 36 = 0
x^2 = 36
x = +6 ; -6;
при x = +6 и x = -6 выражение не имеет смысл.
6) x^6 + 1 = 0
x^6 = -1
степень 6 кратна двум, это значит, что любое число (даже отрицательное) в итоге будет ≥ 0.
Например (-1)^2 = 1.
9) x^2 + 10x + 25 = 0
формула дискриминанта: D = b^2 - 4ac.
D = 10^2 - 4*1*25 = 100 - 100 = 0
D = 0 => x = (-b)/2 = -10/2 = -5
При x = -5 выражение не имеет смысла.
10) выражение, очевидно, не имеет смысла при c - 3 =0 и с + 4 = 0
с = 3 и с = -4.
По формулам сложения находим sin(15 °) и cos(15°)
sin(15°) = sin(45° - 30°) = sin(45°) * cos(30°) - cos(45°) * sin(30°) =
= √2/2 * √3/2 - √2/2 * 1/2 = (√6 -√2)/4.
cos(15°) = cos(45° - 30°) = cos(45°) * cos(30°) - sin(45°) * sin(30°) =
= √2/2 * √3/2 +√2/2 * 1/2 = (√6 +√2)/4.
Далее используем формулы приведения.
Заметим что
75°=90°-15°
105°=90°+15°
sin (75°) = sin(90° - 15°) = cos (15°) = (√6 +√2) /4
cos (75°) = cos(90° - 15°) = sin (15°) = (√6 -√2) /4
sin (105°) = sin(90° + 15°) = cos (15°) = (√6 +√2) /4
cos (105°) = cos(90° + 15°) = - sin (15°) = - (√6 -√2) /4
1) любые 2) любые 5) x ∈ (-∞;-6) ∪ (-6;6) ∪ (6;+∞) 6) любые 9) x ∈ (-∞;-5) ∪ (-5;+∞) 10) с ∈ (-∞;-4) ∪ (-4;3) ∪ (3;+∞)
Объяснение:
Дробь имеет смысл, если знаменатель не равен нулю.
Значит задача состоит в том, что мы должны найти значения икса, при которых знаменатель обращается в нуль.
1) знаменатель = 1 -> имеет смысл всегда
2) знаменатель = 7 -> имеет смысл всегда
5) x^2 - 36 = 0
x^2 = 36
x = +6 ; -6;
при x = +6 и x = -6 выражение не имеет смысл.
6) x^6 + 1 = 0
x^6 = -1
степень 6 кратна двум, это значит, что любое число (даже отрицательное) в итоге будет ≥ 0.
Например (-1)^2 = 1.
9) x^2 + 10x + 25 = 0
формула дискриминанта: D = b^2 - 4ac.
D = 10^2 - 4*1*25 = 100 - 100 = 0
D = 0 => x = (-b)/2 = -10/2 = -5
При x = -5 выражение не имеет смысла.
10) выражение, очевидно, не имеет смысла при c - 3 =0 и с + 4 = 0
с = 3 и с = -4.
По формулам сложения находим sin(15 °) и cos(15°)
sin(15°) = sin(45° - 30°) = sin(45°) * cos(30°) - cos(45°) * sin(30°) =
= √2/2 * √3/2 - √2/2 * 1/2 = (√6 -√2)/4.
cos(15°) = cos(45° - 30°) = cos(45°) * cos(30°) - sin(45°) * sin(30°) =
= √2/2 * √3/2 +√2/2 * 1/2 = (√6 +√2)/4.
Далее используем формулы приведения.
Заметим что
75°=90°-15°
105°=90°+15°
sin (75°) = sin(90° - 15°) = cos (15°) = (√6 +√2) /4
cos (75°) = cos(90° - 15°) = sin (15°) = (√6 -√2) /4
sin (105°) = sin(90° + 15°) = cos (15°) = (√6 +√2) /4
cos (105°) = cos(90° + 15°) = - sin (15°) = - (√6 -√2) /4