а). В этом числе ноль встречается 9 раз, а числа 2, 3, 9 - по 20 раз.
б). Да, 123...9899 делится на 9.
Сначала посчитаем, сколько всего в числе 1234..9899 было выписано цифр 0, 1, 2, 3, 9. Это тоже самое, что и посчитать, сколько раз встречаются эти же цифры в числах от 1 до 99.
Цифра 0:
10, 20, 30, 40, 50, 60, 70, 80, 90 - всего 9 раз.
Цифра 1:
1, 10 - 19 (11 раз), 21, 31, 41, 51, 61, 71, 81 ,91 - всего 20 раз.
Понятно, что 2, 3, 9 встречаются столько же раз, сколько и 1 (все они могут стоять 10 раз в разряде единиц, и 10 раз - в разряде десятков).
Теперь нужно узнать, делится ли число 1234..9899 на 9.
Признак делимости на 9: число делится на 9 тогда и только тогда, когда сумма его цифр тоже делится на 9.
Так что мы должны узнать, делится ли 1 + 2 + 3 + ... + 99 на 9.
Для этого найдем искомую сумму по формуле арифметической прогрессии:
Так как получилось разделить нацело, то 1234...9899 делится на 9.
x=0,25*y (отрезок х в 4 раза меньше чем отрезок у)
x=z+1 (отрезок х на 1 см больше чем отрезок z)
x+y+z=35
Объединяем все условия в одно и получаем систему:
Немного преобразуем ее и получим:
Подставим получившиеся выражения для y,z в последнее уравнение и получим:
x+4x+x-1=35
6x=36
x=6
Теперь найдем y и z
Получаем:
y=4*6=24
z=6-1=5
Получили решение: x=6, y=24, z=5
Теперь проверим соответсвует ли найденное решение нашим условиям:
(это надо просто устно сделать)
Действительно длина одного из отрезков (в данном случае х) в 4 раза меньше длиный другого (в данном случае у) и на 1 больше чем длина третьего (в данном случае z)
а). В этом числе ноль встречается 9 раз, а числа 2, 3, 9 - по 20 раз.
б). Да, 123...9899 делится на 9.
Сначала посчитаем, сколько всего в числе 1234..9899 было выписано цифр 0, 1, 2, 3, 9. Это тоже самое, что и посчитать, сколько раз встречаются эти же цифры в числах от 1 до 99.
Цифра 0:
10, 20, 30, 40, 50, 60, 70, 80, 90 - всего 9 раз.
Цифра 1:
1, 10 - 19 (11 раз), 21, 31, 41, 51, 61, 71, 81 ,91 - всего 20 раз.
Понятно, что 2, 3, 9 встречаются столько же раз, сколько и 1 (все они могут стоять 10 раз в разряде единиц, и 10 раз - в разряде десятков).
Теперь нужно узнать, делится ли число 1234..9899 на 9.
Признак делимости на 9: число делится на 9 тогда и только тогда, когда сумма его цифр тоже делится на 9.Так что мы должны узнать, делится ли 1 + 2 + 3 + ... + 99 на 9.
Для этого найдем искомую сумму по формуле арифметической прогрессии:
Так как получилось разделить нацело, то 1234...9899 делится на 9.
Обозначим x,y,z длины каждого из отрезков.
Тогда:
x=0,25*y (отрезок х в 4 раза меньше чем отрезок у)
x=z+1 (отрезок х на 1 см больше чем отрезок z)
x+y+z=35
Объединяем все условия в одно и получаем систему:
Немного преобразуем ее и получим:
Подставим получившиеся выражения для y,z в последнее уравнение и получим:
x+4x+x-1=35
6x=36
x=6
Теперь найдем y и z
Получаем:
y=4*6=24
z=6-1=5
Получили решение: x=6, y=24, z=5
Теперь проверим соответсвует ли найденное решение нашим условиям:
(это надо просто устно сделать)
Действительно длина одного из отрезков (в данном случае х) в 4 раза меньше длиный другого (в данном случае у) и на 1 больше чем длина третьего (в данном случае z)
В сумме их длины дают 35 (6+24+5=35)
Значит решили верно
Длина первого отрезка = 6
Длина второго отрезка = 24
Длина третьего отрезка = 5