Пусть х км/ч - скорость катера, то (х-2) км/ч скорость катера против течения, а (х+2) скорость катера по течению, значит время затраченное по реке: 15/х-2 + 6/х+2, а оно равно времени по озеру: 22/хСоставим уравнение:15/х-2+6/х+2=22/х (каждое слагаемое умножим на "х(х-2)(х+2)15х(х+2)+6х(х-2)=22х^2-8815х^2+30x+6x^2-12x-22x^2+88=0-x^2+18x+88=0x^2-18x-88=0 Д= b^2-4ac= (-18)^2 - 4(1)(-88)= 676x1= -b+-Корень из Дискриминанта / 2а = 18+26/2=22;х2= 18-26/2=-4 Посторонний корень, т.к. скорость не может быть отрицательной.ответ: 22 км/ч
Получаем квадратное уравнение относительно
cosx=t
Это уравнение имеет хотя бы один корень, если D ≥0
D=64+16(7+3a)=16(11+3a)
D≥0⇒ 11+3a≥0⇒ a≥ -11/3
t₁=1- (√(11+3а))/2 или t₂=1+ (√(11+3а))/2
Обратная замена приводит к уравнениям вида cos=t₁ или cosx=t₂
Чтобы эти уравнения имели хотя бы один корень, необходимо, что бы
-1 ≤ t₁ ≤1 или -1 ≤ t₂ ≤1
Решаем неравенства:
-1 ≤1+ (√(11+3а))/2 ≤1
-2≤√(11+3а))/2≤0
-4≤√(11+3а)≤0
Решением неравенства является
11+3a=0
a=-11/3
t₁=t₂=1/2
cosx=1/2
x=±(π/3)+2πn, n∈Z
Неравенство
-1 ≤1- (√(11+3а))/2 ≤1
также приводит к ответу a=-11/3
О т в е т. При а=-11/3
x=±(π/3)+2πn, n∈Z