Поїзд затримався у дорозі на 40 хв. і ліквідував запізнення на перегоні, довжина якого 80 км, збільшивши швидкість на 20 км/год. Яка швидкість руху потяга за розкладом?
Вероятность того, что в течение года перегорит не менее трёх ламп равна сумме вероятностей того, что перегорит 3 или 4 лампы. Вероятность того, что перегорит три лампы равна P(3)=0,8^3*0,2=0,1024 Вероятность того, что перегорит три лампы равна P(4)=0,8^4=0,4096 Вероятность того, что в течение года перегорит не менее трёх ламп равна : P(3,4)=0,1024+0,4096=0,512
Вероятность того, что перегорит не более трёх ламп равна разности единицы и вероятности того, что прегорят все четыре лампы. Вероятность того, что не перегорят все 4 лампы равна P(4)=0,8^4=0,4096 Вероятность того, что перегорит не более трёх ламп равна: P(0,1,2,3)=1-0,4096=0,5904
Вероятность того, что перегорит три лампы равна
P(3)=0,8^3*0,2=0,1024
Вероятность того, что перегорит три лампы равна
P(4)=0,8^4=0,4096
Вероятность того, что в течение года перегорит не менее трёх ламп равна :
P(3,4)=0,1024+0,4096=0,512
Вероятность того, что перегорит не более трёх ламп равна разности единицы и вероятности того, что прегорят все четыре лампы.
Вероятность того, что не перегорят все 4 лампы равна
P(4)=0,8^4=0,4096
Вероятность того, что перегорит не более трёх ламп равна:
P(0,1,2,3)=1-0,4096=0,5904
Строим гиперболу и затем верхнюю часть графика отобразить в нижнюю(отрицательную часть)
Область определения:
Подставим у=кх в упрощенную функцию.
(*)
Очевидно, что при k=0 уравнение (*) решений не будет иметь.
1) Если x>0, то и это уравнение решений не имеет при k>0(так как левая часть всегда положительно).
2) Если x<0, то и при k<0 это уравнение решений не имеет.
Если объединить 1) и 2) случаи, то уравнение будет иметь хотя бы один корень.
Подставим теперь , имеем
Итак, при k=0 и k=±6.25 графики не будут иметь общих точек