Рассуждаем следующим образом. Чтобы А³ была нулевой матрицей, но чтобы при этом матрица А² не была нулевой, нужно чтобы в матрице А² все элементы кроме одного были равны нулю. Тогда в матрице А должны быть все элементы кроме двух равны нулю. Таким условиям отвечает, матрица, в которой, например два элемента находящихся на линии, параллельной главной диагонали, равны 1, а все остальные элементы матрицы равны нулю:
Или:
Тогда при возведении первой матрицы в квадрат получим матрицу:
А при возведении второй матрицы в квадрат получим:
А возведя в третью степень обе матрицы, получим нулевые матрицы. ответ: или
Чтобы А³ была нулевой матрицей, но чтобы при этом матрица А² не была нулевой, нужно чтобы в матрице А² все элементы кроме одного были равны нулю. Тогда в матрице А должны быть все элементы кроме двух равны нулю. Таким условиям отвечает, матрица, в которой, например два элемента находящихся на линии, параллельной главной диагонали, равны 1, а все остальные элементы матрицы равны нулю:
Или:
Тогда при возведении первой матрицы в квадрат получим матрицу:
А при возведении второй матрицы в квадрат получим:
А возведя в третью степень обе матрицы, получим нулевые матрицы.
ответ: или
1. Пусть х-количество 2-х местных байдарок,
тогда 12-х -количество 3-х местных байдарок.
В двухместных байдарках разместилось 2х человек,
а в трёхместных 3(12-х) человек.
По условию задачи всего было 29 человек.
Составляем уравнение:
2х+3(12-х)=29
2х+36-3х=29
-х=29-36
-х=-7
х=7- было 2-х местных байдарок
2.Запишите уравнение прямой, паралельной данной прямой и проходящей через данную точку А: 3х+4у=12, А (8;-8)
3х+4у=12
4у=12-3х
у=3-3/4 х
k=-3/4
у=kx+b
A(8;-8)
-8=-3/4*8+b
b=-8+12=4
y=-3/4x+4 -уравнение прямой, паралельной данной прямой и проходящей через данную точку А.
3.Запишите уравнение прямой, которая проходит через две данные точки: А (1;3), В (5;-4)
вектор АВ(5-1;-4-3)=(4;-7)
(х-1)/4 = (у-3)/-7
-7х+7=4у-12
7х+4у-19=0 - искомое уравнение прямой