Начнем с того что, для того чтобы трехзначное число не делилось на одно из чисел 2, 5, 7, достаточно того чтобы это трехзначное число не делилось одновременно и на 2, и на 5, и на 7. То есть можно найти количество любых трехзначных чисел (x) и вычеркнуть из них те что, делятся на 70 (y) (одновременно на 2, 5, 7, 70=НОК(2, 5, 7)).
1) Найти количество трехзначных чисел (x):
Первая цифра не может быть нулем но может быть любой из других цифр (9 вариантов), а вторая и третья цифра может равнятся любому из цифр (по 10 вариантов). По правилу умножения получаем число 9*10*10=900=x.
2) Найти количество трехзначных чисел которые делятся на 70 (y):
Найдем количество чисел меньших 1000 делящихся на 70 (a) и вычеркнем из них чисел меньших 100 делящихся на 70 (b), получая таким образом количество трехзначных чисел делящихся на 70 (y).
Наибольшее число меньшее чем 1000 и делящееся на 70 - 980, т.к. 980+70=1050 уже больше чем 1000. Значит чисел меньших 1000 делящихся на 70 - 980/70=14=a.
Наибольшее число меньшее чем 100 и делящееся на 70 - 70. Получаем b=70/70=1 число меньшее 100 и делящееся на 70.
По итогу y=a-b=14-1=13.
Теперь отнимаем y из x получая как ответ число x-y=900-13=887.
Объяснение:
Начнем с того что, для того чтобы трехзначное число не делилось на одно из чисел 2, 5, 7, достаточно того чтобы это трехзначное число не делилось одновременно и на 2, и на 5, и на 7. То есть можно найти количество любых трехзначных чисел (x) и вычеркнуть из них те что, делятся на 70 (y) (одновременно на 2, 5, 7, 70=НОК(2, 5, 7)).
1) Найти количество трехзначных чисел (x):
Первая цифра не может быть нулем но может быть любой из других цифр (9 вариантов), а вторая и третья цифра может равнятся любому из цифр (по 10 вариантов). По правилу умножения получаем число 9*10*10=900=x.
2) Найти количество трехзначных чисел которые делятся на 70 (y):
Найдем количество чисел меньших 1000 делящихся на 70 (a) и вычеркнем из них чисел меньших 100 делящихся на 70 (b), получая таким образом количество трехзначных чисел делящихся на 70 (y).
Наибольшее число меньшее чем 1000 и делящееся на 70 - 980, т.к. 980+70=1050 уже больше чем 1000. Значит чисел меньших 1000 делящихся на 70 - 980/70=14=a.
Наибольшее число меньшее чем 100 и делящееся на 70 - 70. Получаем b=70/70=1 число меньшее 100 и делящееся на 70.
По итогу y=a-b=14-1=13.
Теперь отнимаем y из x получая как ответ число x-y=900-13=887.
Объяснение:
Вариант 2.
1. Решите уравнение:
a 1) - ; 2) - = 0.
Запишите в стандартном виде число:
275000; 2) 0,0028 .
3. Представьте в виде степени с основанием b выражение:
1) ∙ ; 2) : ; 3) ∙ .
4. Упростите выражение 0,4 ∙ 1,6.
5. Найдите значение выражение:
1) + (; 2) .
6. Преобразуйте выражение ∙
так, чтобы оно не содержало степеней с отрицательными
показателями.
7. Вычислите:
1) ∙ ; 2) .
8. Решите графически уравнение = - x – 6 .
А-8 Контрольная работа №3 по теме
«Рациональные уравнения. Степень с целым отрицательным показателем. Функция y = и