Нам нужно доказать что одно число делиться на другое. Что из себя представляет действие деления? Это значит разложить число на два множителя, одно из которых - делитель а другое - частное. Т.е. Если число 156 делиться на 2, то его можно поделить на множители: 156:2=78 Значит раскладываем 156 на 2 и 78. Так же в свою очередь можно разложить и 78: 78=2*39 А это значит что и число 156 можно представить в виде: 156=2*2*39 отсюда можно сделать выводы, что число 156 делиться и на 2, и на 4, и на 78, и на 39. Вот такая логика. Теперь рассмотрим наше число. Разложим по формуле как сумма кубов: Сама формула: В нашем случае:
И давайте посмотрим на первый множитель: 36+63=99 А 99 отлично делиться на 11: 99:11=9 А это значит, что данное число () без проблем делиться на 11.
156:2=78
Значит раскладываем 156 на 2 и 78.
Так же в свою очередь можно разложить и 78:
78=2*39
А это значит что и число 156 можно представить в виде:
156=2*2*39
отсюда можно сделать выводы, что число 156 делиться и на 2, и на 4, и на 78, и на 39. Вот такая логика.
Теперь рассмотрим наше число. Разложим по формуле как сумма кубов:
Сама формула:
В нашем случае:
И давайте посмотрим на первый множитель:
36+63=99
А 99 отлично делиться на 11:
99:11=9
А это значит, что данное число () без проблем делиться на 11.
y = (x + 13)² * (e^x) - 15
Находим первую производную:
y` = (x + 13)² * (e^x) + (2x + 26) * (e^x) = (x + 13)*(x + 15) * (e^x)
Приравняем её к нулю:
(x + 13)*(x + 15) * (e^x) = 0
x₁ = - 13
x₂ = - 15
e^x > 0
Вычисляем значение функции:
f(-13) = - 15
f(- 15) = - 15 + 4/e¹⁵
fmin = - 15
fmax = - 15 + 4/e¹⁵
Используем достаточное условие экстремума функции для одной переменной.
y`` = (x + 13)² + 2*(2x + 26) * (e^x) + 2*(e^x) = (x² + 30x + 223) * (e^x)
Вычисляем:
y``(-15) = - 2/e¹⁵ < 0, значит эта точка - точка максимума
y``(-13) = 2/у¹³ > 0, значит эта точка - точка минимума