Прощу прощения за задержку. Разложить на множители, это означает упростить данное выражение. В данном выражении, мы можем увидеть общие множители abc . Можно конечно разложить так:
abc(27a²bc⁴-36ab³c²) - но как можно заметить, выражение в скобках можно упростить тоже. Поэтому не имеет смысла несколько раз упрощать и упрощать. Поступаем так: Находим минимальную степень а, b и с. И получаем, что можно упростить так:
Можем так же заметить что 27 и 36 делятся на 9. А значит имеем право упростить еще :
Это и будет окончательный ответ. Мы разложили на множители, и если перемножить скобки, получим начальное выражение :)
Если что то не понятно, задайте вопрос в комментарии :)
Уравнение любой касательной к любому графику находится по формуле:
Где производная функции в данной точке. А точка касания по иксу.
1) Поначалу у функции мы должны найти производную общего типа этой функции. Это степенная функция, а производная любой степенной функции находится следующей формулой: - где n это степень. В нашем случае:
Так, нашли производную общего случая.
Так как, точки касания не даны, мы запишем нахождение касательной в любой точке этой функции:
2) Опять же, найдем производную
Так как, точки касания не даны, мы запишем нахождение касательной в любой точке этой функции:
То есть, берешь любой икс, и вставляешь в выражение касательной вместо и получаешь уравнение касательной.
Это и есть окончательные ответы. Если что-то не правильно, то это значит что вы не правильно написали условие.
Разложить на множители, это означает упростить данное выражение.
В данном выражении, мы можем увидеть общие множители abc .
Можно конечно разложить так:
abc(27a²bc⁴-36ab³c²) - но как можно заметить, выражение в скобках можно упростить тоже.
Поэтому не имеет смысла несколько раз упрощать и упрощать.
Поступаем так:
Находим минимальную степень а, b и с.
И получаем, что можно упростить так:
Можем так же заметить что 27 и 36 делятся на 9.
А значит имеем право упростить еще :
Это и будет окончательный ответ. Мы разложили на множители, и если перемножить скобки, получим начальное выражение :)
Если что то не понятно, задайте вопрос в комментарии :)
Где производная функции в данной точке. А точка касания по иксу.
1)
Поначалу у функции мы должны найти производную общего типа этой функции.
Это степенная функция, а производная любой степенной функции находится следующей формулой:
- где n это степень.
В нашем случае:
Так, нашли производную общего случая.
Так как, точки касания не даны, мы запишем нахождение касательной в любой точке этой функции:
2)
Опять же, найдем производную
Так как, точки касания не даны, мы запишем нахождение касательной в любой точке этой функции:
То есть, берешь любой икс, и вставляешь в выражение касательной вместо и получаешь уравнение касательной.
Это и есть окончательные ответы.
Если что-то не правильно, то это значит что вы не правильно написали условие.