Обозначим скорости а и b. Скорость их сближения а+b Они встретились через 30/(a+b) часов после начала. Пешеход А истратил 30/а ч. Пешеход В истратил 30/b ч. 30/a=30/(a+b)+4,5 30/b=30/(a+b)+2 Избавляемся от дробей 60(a+b)=60a+9a(a+b) 30(a+b)=30b+2b(a+b) Раскрываем скобки и упрощаем 20a+20b=20a+3a^2+3ab 15a+15b=15b+b^2+ab Упрощаем 20b=3a^2+3ab 15a=b^2+ab Из 2 уравнения a(15-b)=b^2; a=b^2/(15-b) Нетрудно подобрать такое b, чтобы а было целым. b=6; a=6^2/(15-6)=36/9=4. Подставляем в 1 уравнение 20*6=3*4^2+3*4*6 120=3*16+3*24=3*(16+24)=3*40 Все правильно. ответ: А=6; В=4
Подготовка к ЕГЭ
Задать во Войти
АнонимМатематика23 марта 22:16
найдите сумму корней квадратного уравнения х^2-6x+2=0
ответ или решение1
Михайлов Вячеслав
1. Вспомним формулу дискриминанта:
Дискриминант D квадратного трёхчлена a * x2 + b * x + c равен b2 - 4 * a* c.
Корни квадратного уравнения зависят от знака дискриминанта (D):
D > 0 - уравнение имеет 2 различных вещественных корня (х1 = (-b +√D) / (2 * а)), х2 = (-b -√D) / (2 * а));
D = 0 - уравнение имеет 1 корень (х = (-b +√D) / (2 * а));
D < 0 - уравнение не имеет вещественных корней.
2. Найдём дискриминант заданного уравнения:
D = 36 - 4 * 1 *2;
D = 36 - 8;
D = 28.
3. Дискриминант больше 0, значит уравнение имеет два корня:
х1 = (6 +√28) / (2 * 1);
х1 = (6 + 2√7) / 2;
х1 = 3 + √7;
х2 = (6 - √28) / (2 * 1);
х2 = (6 - 2√7) / 2;
х2 = 3 - √7;
4. Найдём сумму корней уравнения:
х1 + х2 = 3 +√7 + 3 -√7 = 6.
ответ: Сумма корней квадратного уравнения равна 6.бъяснение:
Скорость их сближения а+b
Они встретились через 30/(a+b) часов после начала.
Пешеход А истратил 30/а ч.
Пешеход В истратил 30/b ч.
30/a=30/(a+b)+4,5
30/b=30/(a+b)+2
Избавляемся от дробей
60(a+b)=60a+9a(a+b)
30(a+b)=30b+2b(a+b)
Раскрываем скобки и упрощаем
20a+20b=20a+3a^2+3ab
15a+15b=15b+b^2+ab
Упрощаем
20b=3a^2+3ab
15a=b^2+ab
Из 2 уравнения
a(15-b)=b^2; a=b^2/(15-b)
Нетрудно подобрать такое b, чтобы а было целым.
b=6; a=6^2/(15-6)=36/9=4.
Подставляем в 1 уравнение
20*6=3*4^2+3*4*6
120=3*16+3*24=3*(16+24)=3*40
Все правильно.
ответ: А=6; В=4