{ x + 3y - z = 2 { -2x + 4y + 2z = 4 { 3x + y - 5z = -6 Второе уравнение можно разделить на 2 { x + 3y - z = 2 { -x + 2y + z = 2 { 3x + y - 5z = -6 2 уравнение складываем с 1. 1 ур-ние умножаем на -3 и складываем с 3. { x + 3y - z = 2 { 0x + 5y + 0z = 4 { 0x - 8y - 2z = -12 3 уравнение делим на -2 4y + z = 6 Со 2 уравнение нам сильно повезло - сразу y = 4/5, подставляем в 3 { x + 3y - z = 2 { y = 4/5 { 4*4/5 + z = 6 Решаем 3 уравнение { x + 3y - z = 2 { y = 4/5 { z = 6 - 16/5 = 30/5 - 16/5 = 14/5 Подставляем это все в 1 уравнение x + 3*4/5 - 14/5 = 2 x + 12/5 - 14/5 = 2 x - 2/5 = 2 x = 2 + 2/5 = 12/5
Главное правило - умножаешь 2 и 3 строки на такие числа, чтобы при сложении их с 1 строкой одна из переменных (например, х) обращалась в 0. Получаешь 2 уравнения с 2 неизвестными y и z. А потом тоже самое - умножаешь одно уравнение так, чтобы при сложении со вторым переменная y обратилась в 0. Остается одно уравнение с z. В твоем случае второй шаг не понадобился - во 2 уравнении сразу у нашли. Ну а дальше просто - подставляешь z во второе уравнение, находишь y. Потом подставляешь y и z в первое уравнение и находишь х.
При вычислении воспользуйтесь формулами m=-b/2a и n=f(-b/2a),где m и n координаты вершины параболы f(x) =ax^2+bx+c
Решение: а) f(x)=x²-6x+4; В приведенном уравнение b =-6, a=1 m=x=-b/2a =-(-6)/(2*1)=6/2=3 n=y(3)=3²-6*3+4=9-18+4=-5 Вершина параболы y= x² - 6x + 4 находится в точке с координатами m=х=3, n=у(3)=-5
б) f(x)=-x²-4x+1 В приведенном уравнение b =-4, a=-1 m=x=-b/2a =-(-4)/(2*(-1))=-4/2=-2 n=y(-2)=-(-2)²-4*(-2)+1=-4+8+1= 5 Вершина параболы y= -x² - 4x + 1 находится в точке с координатами m=х=-2, n=у(-2)= 5
в)f(x)=3x²-12x+2
В приведенном уравнение b =-12, a=3 m=x=-b/2a =-(-12)/(2*3)=12/6= 2 n=y(2)=3*2²-12*2+2=12-24+2= -10 Вершина параболы y= 3x²-12x+2 находится в точке с координатами m=х=2, n=у(2)= -10
{ -2x + 4y + 2z = 4
{ 3x + y - 5z = -6
Второе уравнение можно разделить на 2
{ x + 3y - z = 2
{ -x + 2y + z = 2
{ 3x + y - 5z = -6
2 уравнение складываем с 1. 1 ур-ние умножаем на -3 и складываем с 3.
{ x + 3y - z = 2
{ 0x + 5y + 0z = 4
{ 0x - 8y - 2z = -12
3 уравнение делим на -2
4y + z = 6
Со 2 уравнение нам сильно повезло - сразу y = 4/5, подставляем в 3
{ x + 3y - z = 2
{ y = 4/5
{ 4*4/5 + z = 6
Решаем 3 уравнение
{ x + 3y - z = 2
{ y = 4/5
{ z = 6 - 16/5 = 30/5 - 16/5 = 14/5
Подставляем это все в 1 уравнение
x + 3*4/5 - 14/5 = 2
x + 12/5 - 14/5 = 2
x - 2/5 = 2
x = 2 + 2/5 = 12/5
Главное правило - умножаешь 2 и 3 строки на такие числа, чтобы при сложении их с 1 строкой одна из переменных (например, х) обращалась в 0.
Получаешь 2 уравнения с 2 неизвестными y и z.
А потом тоже самое - умножаешь одно уравнение так, чтобы при сложении со вторым переменная y обратилась в 0. Остается одно уравнение с z.
В твоем случае второй шаг не понадобился - во 2 уравнении сразу у нашли.
Ну а дальше просто - подставляешь z во второе уравнение, находишь y.
Потом подставляешь y и z в первое уравнение и находишь х.
а) f(x)=x²-6x+4;
б) f(x)=-x²-4x+1
в)f(x)=3x²-12x+2;
При вычислении воспользуйтесь формулами
m=-b/2a и n=f(-b/2a),где m и n координаты вершины параболы f(x) =ax^2+bx+c
Решение:
а) f(x)=x²-6x+4;
В приведенном уравнение b =-6, a=1
m=x=-b/2a =-(-6)/(2*1)=6/2=3
n=y(3)=3²-6*3+4=9-18+4=-5
Вершина параболы y= x² - 6x + 4 находится в точке с координатами m=х=3, n=у(3)=-5
б) f(x)=-x²-4x+1
В приведенном уравнение b =-4, a=-1
m=x=-b/2a =-(-4)/(2*(-1))=-4/2=-2
n=y(-2)=-(-2)²-4*(-2)+1=-4+8+1= 5
Вершина параболы y= -x² - 4x + 1 находится в точке с координатами m=х=-2, n=у(-2)= 5
в)f(x)=3x²-12x+2
В приведенном уравнение b =-12, a=3
m=x=-b/2a =-(-12)/(2*3)=12/6= 2
n=y(2)=3*2²-12*2+2=12-24+2= -10
Вершина параболы y= 3x²-12x+2 находится в точке с координатами m=х=2, n=у(2)= -10