Эти линейные функции вида у=kx+b, где k-это угловой коэффициент, с его изменением будет меняться угол наклона прямой к оси Ох, значит, функции с одинаковыми угловыми коэффициентами будут параллельны друг другу. Отсюда параллельные функции:
у=2х+1 и у=2х-3. Эти графики функций можно построить по двум точкам каждый. Находим точки:
у=2х+1
х=0
у=2*0+1=0+1=1
(0;1)
х=1
у=2*1+1=3
(1;3)
у=2х-3
х=0
у=2*0-3
у=-3
(0;-3)
х=1
у=2*1-3=-1
(1;-1)
у=х+7
х=0
у=7
(0;7)
х=2
у=2+7=9
(2;9)
По этим точкам строим графики.
2)
Поскольку графики прямые, два из которых параллельны, то эти 2 графика будут пересекать третий, т.е. у=2х+1 и у=2х-3 будут пересекать график у=х+3, а график у=х+7 пересекать его не будет, т.к. он с тем же угловым коэффициентом.
Для нахождения координат пересечения приравняем функции:
Бино́м Нью́то́на — формула для разложения на отдельные слагаемые целой неотрицательной степени суммы двух переменных, имеющая вид
( a + b ) n = ∑ k = 0 n ( n k ) a n − k b k = ( n 0 ) a n + ( n 1 ) a n − 1 b + ⋯ + ( n k ) a n − k b k + ⋯ + ( n n ) b n (a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n - k} b^k = {n\choose 0}a^n + {n\choose 1}a^{n - 1}b + \dots + {n\choose k}a^{n - k}b^k + \dots + {n\choose n}b^n где ( n k ) = n ! k ! ( n − k ) ! = C n k {n\choose k}=\frac{n!}{k!(n - k)!}= C_n^k — биномиальные коэффициенты, n n — неотрицательное целое число.
В таком виде эта формула была известна ещё индийским и персидским математикам; Ньютон вывел формулу бинома Ньютона для более общего случая, когда показатель степени — произвольное действительное (или даже комплексное) число.
1)
у=2х+1
у=2х-3
у=х+7
Эти линейные функции вида у=kx+b, где k-это угловой коэффициент, с его изменением будет меняться угол наклона прямой к оси Ох, значит, функции с одинаковыми угловыми коэффициентами будут параллельны друг другу. Отсюда параллельные функции:
у=2х+1 и у=2х-3. Эти графики функций можно построить по двум точкам каждый. Находим точки:
у=2х+1
х=0
у=2*0+1=0+1=1
(0;1)
х=1
у=2*1+1=3
(1;3)
у=2х-3
х=0
у=2*0-3
у=-3
(0;-3)
х=1
у=2*1-3=-1
(1;-1)
у=х+7
х=0
у=7
(0;7)
х=2
у=2+7=9
(2;9)
По этим точкам строим графики.
2)
Поскольку графики прямые, два из которых параллельны, то эти 2 графика будут пересекать третий, т.е. у=2х+1 и у=2х-3 будут пересекать график у=х+3, а график у=х+7 пересекать его не будет, т.к. он с тем же угловым коэффициентом.
Для нахождения координат пересечения приравняем функции:
2х+1=х+3
2х-х=3-1
х=2
у=2+3=5
координата пересечения (2;5)
2х-3=х+3
2х-х=3+3
х=6
у=6+3=9
(6;9)
Объяснение:
(
a
+
b
)
n
=
∑
k
=
0
n
(
n
k
)
a
n
−
k
b
k
=
(
n
0
)
a
n
+
(
n
1
)
a
n
−
1
b
+
⋯
+
(
n
k
)
a
n
−
k
b
k
+
⋯
+
(
n
n
)
b
n
(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n - k} b^k = {n\choose 0}a^n + {n\choose 1}a^{n - 1}b + \dots + {n\choose k}a^{n - k}b^k + \dots + {n\choose n}b^n
где
(
n
k
)
=
n
!
k
!
(
n
−
k
)
!
=
C
n
k
{n\choose k}=\frac{n!}{k!(n - k)!}= C_n^k — биномиальные коэффициенты,
n
n — неотрицательное целое число.
В таком виде эта формула была известна ещё индийским и персидским математикам; Ньютон вывел формулу бинома Ньютона для более общего случая, когда показатель степени — произвольное действительное (или даже комплексное) число.