1)f(x)=4x+5 Функция монотонно возрастает ( коэффициент при Х >0), поэтому наименьшему значению аргумента соответствует наименьшее значение функции, и наоборот. Наименьшее значение функция принимает в точке х=-1, наибольшее - в точке х=2. y(-1)= 4*(-1)+5=1 y(2)= 4*2+5=13 ответ: У наим.=1, У наиб.=13
f(x)=3-2x Функция монотонно убывает ( коэффициент при Х < 0), поэтому наименьшему значению аргумента соответствует наибольшее значение функции, и наоборот. Наименьшее значение функция принимает в точке х=3, наибольшее - в точке х=0. y(0)= 3-2*0=3 y(3)= 3-2*3=-3 ответ: У наим.=-3, У наиб.=3
Приравняем её нулю ( при х не равном 0 можно только числитель).
x^3 - 8 = 0.
x^3 = 8, х = ∛8 = 2. Это критическая точка.
С учётом разрыва функции при х = 0 имеем 3 промежутка монотонности функции: (-∞; 0), (0; 2) и (2; +∞).
На промежутках находим знаки производной.
Находится производная, приравнивается к 0, найденные точки выставляются на числовой прямой; к ним добавляются те точки, в которых производная не определена.
Где производная положительна - функция возрастает, где отрицательна - там убывает. Точки, в которых происходит смена знака и есть точки экстремума - где производная с плюса меняется на минус - точка максимума, а где с минуса на плюс - точки минимума.
Функция монотонно возрастает ( коэффициент при Х >0), поэтому
наименьшему значению аргумента соответствует наименьшее значение функции, и наоборот. Наименьшее значение функция принимает в точке х=-1, наибольшее - в точке х=2.
y(-1)= 4*(-1)+5=1
y(2)= 4*2+5=13
ответ: У наим.=1, У наиб.=13
f(x)=3-2x
Функция монотонно убывает ( коэффициент при Х < 0), поэтому
наименьшему значению аргумента соответствует наибольшее значение функции, и наоборот.
Наименьшее значение функция принимает в точке х=3, наибольшее - в точке х=0.
y(0)= 3-2*0=3
y(3)= 3-2*3=-3
ответ: У наим.=-3, У наиб.=3
Дана функция
Производная её равна: y' = (3x^2*x^2 - 2x*(x^3 + 4))/x^4 = (x^3 - 8)/x^3.
Приравняем её нулю ( при х не равном 0 можно только числитель).
x^3 - 8 = 0.
x^3 = 8, х = ∛8 = 2. Это критическая точка.
С учётом разрыва функции при х = 0 имеем 3 промежутка монотонности функции: (-∞; 0), (0; 2) и (2; +∞).
На промежутках находим знаки производной.
Находится производная, приравнивается к 0, найденные точки выставляются на числовой прямой; к ним добавляются те точки, в которых производная не определена.
Где производная положительна - функция возрастает, где отрицательна - там убывает. Точки, в которых происходит смена знака и есть точки экстремума - где производная с плюса меняется на минус - точка максимума, а где с минуса на плюс - точки минимума.
x = -1 0 1 2 3
y' = 9 - -7 0 0,7037.
• Минимум функции в точке: х = 2, у = 3.
• Максимума функции нет.
• Возрастает на промежутках: (-∞; 0) U (2; ∞).
• Убывает на промежутке: (0; 2).