2cos(π/3 - 3x) + √3 = 0
2cos(π/3 - 3x) = -√3
cos(π/3 - 3x) = -√3/2
• Воспользуемся формулой:
cos(x) = b ( |b|≤ 1, [0; π] )
x = ± arccos(b) + 2πn, n ∈ ℤ
• Получаем:
π/3 - 3x = ± arccos(-√3/2) + 2πn, n ∈ ℤ
π/3 - 3x = ± (π - arccos(-√3/2)) + 2πn, n ∈ ℤ
π/3 - 3x = ± (π - 5π/6) + 2πn, n ∈ ℤ
π/3 - 3x = ± π/6 + 2πn, n ∈ ℤ
-3x = ± π/6 - π/3 + 2πn, n ∈ ℤ
[ -3x = -π/6 - π/3 + 2πn, n ∈ ℤ
[ -3x = π/6 - π/3 + 2πn, n ∈ ℤ
[ -3x = -π/2 + 2πn, n ∈ ℤ / : (-3)
[ -3x = -π/3 + 2πn, n ∈ ℤ / : (-3)
[ x = π/6 - 2πn/3, n ∈ ℤ
[ x = π/9 - 2πn/3, n ∈ ℤ
ответ: x = π/6 - 2πn/3, n ∈ ℤ ; x = π/9 - 2πn/3, n ∈ ℤ
(2,7х - 15) – (3,1х - 14).=2,7х-15-3,1х+14=-0,4х-1
2,7 - 49 : (-7).=2,7-(-7)=9,7
А14 8b
А15.2х-4=-3 2х=1 х=0,5 у=2*0,5-4=-3 (0,5;-3)
А16.(0;4)
А17 не понятно что вычислить
А18 3) (2; 11) так как 11=3*2+5
А19 3) 1,5х6 у4
А20.12ху – 4у2.=4у(х - у)
А21.а(у - 5) – b(y - 5).=(у-5)(а-b)
А22 2а(а - 18) + 3(а2 + 12а) – 5а2 + 3=2а²-36а+3а²+36а-5а²+3=3
А23каких дробей непонятно
В1 8у – (3у + 19) = -3(2у - 1).
8у-3у-19=-6у+3
5у+6у=3+19
11у=22
у=2
В2 5х2 – 4х = 0. х(5х-4)=0
х=0 5х=4 х=4/5
В3. Решите уравнение
ответ:
В4. Упростите выражение .
ответ непонятно
2cos(π/3 - 3x) + √3 = 0
2cos(π/3 - 3x) = -√3
cos(π/3 - 3x) = -√3/2
• Воспользуемся формулой:
cos(x) = b ( |b|≤ 1, [0; π] )
x = ± arccos(b) + 2πn, n ∈ ℤ
• Получаем:
cos(π/3 - 3x) = -√3/2
π/3 - 3x = ± arccos(-√3/2) + 2πn, n ∈ ℤ
π/3 - 3x = ± (π - arccos(-√3/2)) + 2πn, n ∈ ℤ
π/3 - 3x = ± (π - 5π/6) + 2πn, n ∈ ℤ
π/3 - 3x = ± π/6 + 2πn, n ∈ ℤ
-3x = ± π/6 - π/3 + 2πn, n ∈ ℤ
[ -3x = -π/6 - π/3 + 2πn, n ∈ ℤ
[ -3x = π/6 - π/3 + 2πn, n ∈ ℤ
[ -3x = -π/2 + 2πn, n ∈ ℤ / : (-3)
[ -3x = -π/3 + 2πn, n ∈ ℤ / : (-3)
[ x = π/6 - 2πn/3, n ∈ ℤ
[ x = π/9 - 2πn/3, n ∈ ℤ
ответ: x = π/6 - 2πn/3, n ∈ ℤ ; x = π/9 - 2πn/3, n ∈ ℤ