Половину времени, затраченного на дорогу, автомобиль ехал со скоростью 60км/ч,а вторую половуну времени- со скоростью 46 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути.
Решение
Средня скорость движения равна среднему арифметическому всех скоростей в зависимости от пройденного времени. В нашем случае, т.к. время равно и каждое равно половине пройденного, тогда:
Половину времени, затраченного на дорогу, автомобиль ехал со скоростью 60км/ч,а вторую половуну времени- со скоростью 46 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути.
Решение
Средня скорость движения равна среднему арифметическому всех скоростей в зависимости от пройденного времени. В нашем случае, т.к. время равно и каждое равно половине пройденного, тогда:
S1=V1*t1
S2=V2*t2
t1=t2=tобщ*1/2
S1+S2=Sобщ
V1*tобщ*1/2+V1*t*1/2=Sобщ
tобщ*1/2*(V1+V2)=Sобщ
Sобщ/tобщ=(V1+V2)*1/2=(60+46)*1/2=106*1/2=53 км/час
ответ: средняя скорость движения автомобиля равна 53 км/час
Объяснение:
((a+7)\(a-7)-(a-7)\(a+7))\(14\(a^2-7a))
Приведем дроби в скобке к общему знаменателю a^2-49, домножив первую дробь на (a+7), а вторую на (a-7):
((a+7)^2-(a-7)^2)\(a^2-49)
По формуле разности квадратов:
((a+7-a+7)(a+7+a-7))\(a^2-49)
14*2a\a^2-49
28a\a^2-49
Представим деление одной дроби на другую умножением первой на перевернутую вторую:
(28a*(a^2-7a))\(14*(a^-49))
Вынесем в числителе "а" за скобку, а в знаменателе разложим скобку на множители:
(28a^2*(a-7))\(14(a-7)(a+7))
Сократим дробь:
2a^2\(x+7)