Побудуйте графік функції у=-x+9 Користуючись графіком. 1) значення Функції якщо значення аргумента дорівнює 4 2) значення аргумента функції якщо =значення функції дорівнює 3 3) чи проходить графік функції через точку А (1;8)
Для того, чтобы найти функцию, обратную данной. надо х и у поменять местами, и вновь выразить у через х: y = (2x-1) / (x+3) x = (2y-1) / (y+3) - выражаем теперь у через х: x(y+3) = 2y - 1 y(2-x) = 3x+1 y = (3x+1) / (2-x) - обратная функция. Теперь необходимо ее построить. 1) Найти точки экстремума и (или) точки перегиба: y' = [3*(2-x) + (3x+1) ] / (2-x)^2 = [6-3x+3x+1] / (2-x)^2 = 7/(2-x)^2 - производная всегда положительная, значит функция у возрастает на всей области определения. 2) ОДЗ: 2-x # 0, x # 2. Значит прямая х=2 - ассимптота функции у. 3) Нули функции: y=0, 3x+1=0, x=-1/3. Точка (-1/3; 0). 4) Пересечение с осью Оу: х=0, у=1/2. Точка (0; 1/2)
Объяснение:
1. 3(x - 2) = x + 2
3x - 6 = x + 2
3x - x = 2 + 6
2x = 8
x = 4
2. 5 - 2(x - 1) = 4 - x
5 - 2x - 2 = 4 - x
-2x + x = 4 -5 + 2
-x = 1
x = -1
3. (7x + 1) - (9x +3) = 5
7x + 1 - 9x - 3 = 5
7x - 9x = 5 - 1 + 3
-2x = 7
x = -3,5
4. 3,4 + 2y = 7(y - 2,3)
3,4 + 2y = 7y - 16,1
2y - 7y = -16,1 - 3,4
-5y = -19,5
y = 3,9
5. 0,2(7 - 2y) = 2,3 - 0,3(y - 6)
1,4 - 0,4y = 2,3 - 0,3y + 1,8
- 0,4y + 0,3y = 2,3 + 1,8 - 1,4
-0,1y = 2,7
y = -27
6. 2/3(1/3x - 1/2) = 4x + 2 1/2
2/9x - 1/3 = 4x + 5/2
2/9x - 4x = 5/2 + 1/3
-34/9 x = 17/6
x = -3/4
y = (2x-1) / (x+3)
x = (2y-1) / (y+3) - выражаем теперь у через х:
x(y+3) = 2y - 1
y(2-x) = 3x+1
y = (3x+1) / (2-x) - обратная функция.
Теперь необходимо ее построить.
1) Найти точки экстремума и (или) точки перегиба:
y' = [3*(2-x) + (3x+1) ] / (2-x)^2 = [6-3x+3x+1] / (2-x)^2 = 7/(2-x)^2 - производная всегда положительная, значит функция у возрастает на всей области определения.
2) ОДЗ: 2-x # 0, x # 2. Значит прямая х=2 - ассимптота функции у.
3) Нули функции: y=0, 3x+1=0, x=-1/3. Точка (-1/3; 0).
4) Пересечение с осью Оу: х=0, у=1/2. Точка (0; 1/2)