Складываем уравнения:
x^2 + xy + y + y^2 + xy + x = 1 + 5
(x^2 + 2xy + y^2) + (x + y) - 6 = 0
(x + y)^2 + (x + y) - 6 = 0
Получаем квадратное уравнение относительно t = x + y:
t^2 + t - 6 = 0
По теореме Виета сумма корней равна -1, произведение -6. Угадываем корни: t = -3 или t = 2.
1) t = -3
x + y = -3 [*]
Рассматриваем первое уравнение:
x^2 + xy + y = 1
x(x + y) + y = 1
-3x + y = 1
Вычитаем из уравнения [*] получившееся уравнение.
x + y + 3x - y = -3 - 1
4x = -4
x = -1
y = -3 - x = -3 + 1 = -2.
2) Аналогично с t = 2.
x + y = 2
2x + y = 1
y = 3
ответ. (-1, -2), (-1, 3).
Складываем уравнения:
x^2 + xy + y + y^2 + xy + x = 1 + 5
(x^2 + 2xy + y^2) + (x + y) - 6 = 0
(x + y)^2 + (x + y) - 6 = 0
Получаем квадратное уравнение относительно t = x + y:
t^2 + t - 6 = 0
По теореме Виета сумма корней равна -1, произведение -6. Угадываем корни: t = -3 или t = 2.
1) t = -3
x + y = -3 [*]
Рассматриваем первое уравнение:
x^2 + xy + y = 1
x(x + y) + y = 1
-3x + y = 1
Вычитаем из уравнения [*] получившееся уравнение.
x + y + 3x - y = -3 - 1
4x = -4
x = -1
y = -3 - x = -3 + 1 = -2.
2) Аналогично с t = 2.
x + y = 2
2x + y = 1
x = -1
y = 3
ответ. (-1, -2), (-1, 3).
2) приравниваем её к нулю и решаем получившееся уравнение
3) Смотрим: какие корни попали в указанный промежуток и ищем значения данной функции в этих точках и на концах данного отрезка;
4) пишем ответ.
Поехали?
1) f'(x) = ((x² -8x)'(x+1) - (x² -8x)(x+1)')/(x+1)²=
((2x-8)(x+1) - (x²-8x))/(x+1)²= (2x² -8x +2x -8 - x² +8x)/(x+1)²=
=(x² +2x -8) / (х+1)²
2)(x² +2x -8) / (х+1)² ⇒ x² +2x -8 =0, ⇒ х = - 4 и х = 2
3) Из найденных корней в указанный промежуток попало х = -4
а) х = -4
f(-4) = (-4)² -8*(-4) /(-4+1) = 48/(-2) = -24
б) х = -5
f(-5) = (-5)² -8*(-5) /(-5+1) = 65/(-4) = -13,75
в) х = -2
f(-2) = (-2)² -8*(-2)/(-2+1) = 20/(-1) = -20
4) maxf(x) = f((-2) = -20
minf(x) = f(-4) = -24