Побудуйте графік функції y=x2-4+5. Користуючись графіком, знайдіть: а) Область значення функції; б) Проміжки зростання та спадання функції; в) проміжок, де функція набирає додатків значень.
ОТВЕТ: катер за 5 часов проплыл расстояние 91,7 километров.
КРАТКО
Решим данную задачу по действиям с пояснениями.
1) 18,6 + 1,3 = 19, 9 километров в час - скорость катера по течению реки, так как собственная скорость катера 18,6 километров в час, а скорость течения реки 1,3 километров в час;
2) 18,6 - 1,3 = 17, 3 километров в час - скорость катера против течению реки, так как собственная скорость катера 18,6 километров в час, а скорость течения реки 1,3 километров в час;
3) 3 * 17,3 = 51,9 километров - расстояние, которое проплыл катер против течения реки;
4) 2 * 19,9 = 39,8 километров - расстояние, которое проплыл катер по течения реки;
5) 51,9 + 39,8 = 91,7 километров - такой путь проплыл катер.
1. х - скорость течения реки. По течению со скоростью (18+х)км/час 80 км за время: 80/(18+х) час Против течения те же 80 км со скоростью (18-х)км/час за время: 80/(18-х), т.к. общее время 9час, то: 80/(18+х) + 80/(18-х) = 9; 80·(18-х) + 80·(18+х) = 9(18+х)·(18-х), раскроем скобки, сократим члены с противоположными знаками,разделим все члены уравнения на 9 и получим: х² = 4, х₁=2(км/час. (Отрицательную скорость течения х₂ отметаем) 2.а) х²/(х+3) = 1/4; 4х² - х-3 =0; х₁ =(1+7)/8 =1; х₂ = (1-7)/8= -3/4 б) (х²-х)/(х+3) = 12/(х+3); х²-х-12 =0; х₁ = (1+7)/2=4; х₂ =(1-7)/2=-3 3. у =(х²-5х+6)/(х²-4), у=0; (х²-5х+6)/(х²-4)=0. , Отбрасываем знаменатель, так ка дробь равна нулю, когда ее числитель равен 0; х² - 5х + 6 =0; х₁=(5+1)/2 = 3: х₂ =(5-1)/2 =2
Решим задачу на движение по воде
Дано:
t(по течению) = 2 ч
t(против течения)=3 ч
v(собств.)=18,6 км/ч
v(теч.)=1,3 км/ч
Найти
S=? км
Решение
1) Найдём скорость катера против течения реки:
v(против течения)=v(собственная) - v (течения реки)=18,6-1,3=17,3 (км/час)
2) Катер плыл 3 часа против течения со скоростью 17,3 км/час. Найдём расстояние, которое катер проплыл против течения:
S(расстояние)=v(скорость)×t(время)
S(против течения)=17,3×3= 51,9 (км)
3) Найдём скорость катера по течению:
v(по течению)=v(собственная) + v (течения реки)=18,6+1,3=19,9 (км/час)
4) Катер плыл 2 часа против течения со скоростью 19,9 км/час. Найдём расстояние, которое катер проплыл по течению:
S(расстояние)=v(скорость)×t(время)
S(по течению)=2×19,9=39,8 (км)
5) Расстояние за 5 часов равно:
S=S(против течения)+S(по течению)=51,9+39,8=91,7 (км)
ОТВЕТ: катер за 5 часов проплыл расстояние 91,7 километров.
КРАТКО
Решим данную задачу по действиям с пояснениями.
1) 18,6 + 1,3 = 19, 9 километров в час - скорость катера по течению реки, так как собственная скорость катера 18,6 километров в час, а скорость течения реки 1,3 километров в час;
2) 18,6 - 1,3 = 17, 3 километров в час - скорость катера против течению реки, так как собственная скорость катера 18,6 километров в час, а скорость течения реки 1,3 километров в час;
3) 3 * 17,3 = 51,9 километров - расстояние, которое проплыл катер против течения реки;
4) 2 * 19,9 = 39,8 километров - расстояние, которое проплыл катер по течения реки;
5) 51,9 + 39,8 = 91,7 километров - такой путь проплыл катер.
ответ: 91,7 километров.
По течению со скоростью (18+х)км/час 80 км за время:
80/(18+х) час
Против течения те же 80 км со скоростью (18-х)км/час за время:
80/(18-х), т.к. общее время 9час, то: 80/(18+х) + 80/(18-х) = 9;
80·(18-х) + 80·(18+х) = 9(18+х)·(18-х), раскроем скобки, сократим члены с противоположными знаками,разделим все члены уравнения на 9 и получим: х² = 4, х₁=2(км/час.
(Отрицательную скорость течения х₂ отметаем)
2.а) х²/(х+3) = 1/4; 4х² - х-3 =0; х₁ =(1+7)/8 =1; х₂ = (1-7)/8= -3/4
б) (х²-х)/(х+3) = 12/(х+3); х²-х-12 =0; х₁ = (1+7)/2=4; х₂ =(1-7)/2=-3
3. у =(х²-5х+6)/(х²-4), у=0; (х²-5х+6)/(х²-4)=0. , Отбрасываем знаменатель, так ка дробь равна нулю, когда ее числитель равен 0; х² - 5х + 6 =0; х₁=(5+1)/2 = 3: х₂ =(5-1)/2 =2