1.Выражение не разложимо на множители на множестве рациональных чисел.
x²−2x+6
3.Выражение не разложимо на множители на множестве рациональных чисел.
3y²+6y−82
5.Множитель 1/2 выносим из каждого члена.
1/2(2а²+a+62)
7.Разложим многочлен на множители.
1/2⋅(2x²−a+62)
9.Выражение не разложимо на множители на множестве рациональных чисел.
3x²+2x+5
2.Выражение не разложимо на множители на множестве рациональных чисел.
4b²+2b−11
4.Множитель 1212 выносим из каждого члена.
1/2(p²+10p−16)
6.Множитель 1414 выносим из каждого члена.
1/4(c²+4c−24)
8.Выражение не разложимо на множители на множестве рациональных чисел.
2x²+4x−7
Пусть n = x, мне просто так удобнее)
Обе части уравнение умножим на 6:
х³+3х²+2х>0
х(х²+3х+2)>0
х(х+1)(х+2)>0
При любых натуральных значениях х, х(х+1)(х+2) > 0(то есть является натуральным числом)
___________________
2 решение :
Рассмотрим по отдельности каждое слагаемое:
х³/6 > 0 | *6
х³>0
х > 0
То есть х³/6 больше нуля при всех натуральных числах.
____________________________
Если рассмотреть остальные 2 слагаемых, то там будет тоже самое(мне просто лень писать).
Если каждое из слагаемых больше нуля, то и сама сумма больше нуля, то есть является натуральным числом)
1.Выражение не разложимо на множители на множестве рациональных чисел.
x²−2x+6
3.Выражение не разложимо на множители на множестве рациональных чисел.
3y²+6y−82
5.Множитель 1/2 выносим из каждого члена.
1/2(2а²+a+62)
7.Разложим многочлен на множители.
1/2⋅(2x²−a+62)
9.Выражение не разложимо на множители на множестве рациональных чисел.
3x²+2x+5
2.Выражение не разложимо на множители на множестве рациональных чисел.
4b²+2b−11
4.Множитель 1212 выносим из каждого члена.
1/2(p²+10p−16)
6.Множитель 1414 выносим из каждого члена.
1/4(c²+4c−24)
8.Выражение не разложимо на множители на множестве рациональных чисел.
2x²+4x−7
Пусть n = x, мне просто так удобнее)
Обе части уравнение умножим на 6:
х³+3х²+2х>0
х(х²+3х+2)>0
х(х+1)(х+2)>0
При любых натуральных значениях х, х(х+1)(х+2) > 0(то есть является натуральным числом)
___________________
2 решение :
Рассмотрим по отдельности каждое слагаемое:
х³/6 > 0 | *6
х³>0
х > 0
То есть х³/6 больше нуля при всех натуральных числах.
____________________________
Если рассмотреть остальные 2 слагаемых, то там будет тоже самое(мне просто лень писать).
____________________________
Если каждое из слагаемых больше нуля, то и сама сумма больше нуля, то есть является натуральным числом)