В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
8алина82
8алина82
15.03.2021 22:35 •  Алгебра

Побудуйте графік функцій y=-3x+5​

Показать ответ
Ответ:
Andreeva555
Andreeva555
29.05.2023 05:29

Пусть функция     y=f(x)      определена на отрезке     [a;b]

Разобьём отрезок произвольным образом на n  частей точками:

a < x_{0}

В каждом интервале произвольным образом выбираем точку

c_{i}\in [x_{i-1};x_{i}]

Cумма

S_{n}=\Sigma^{i=n}_{i=1}f(c_{i})\cdot \Delta x_{i},

где       \Delta x_{i}=x_{i}-x_{i-1}    -  длина частичного отрезка   [x_{i-1};x_{i}] ,

называется интегральной суммой функции f(x)  на отрезке   [a;b].

Определенным интегралом от функции  f(x)   на отрезке   [a;b] называется предел интегральных сумм  S_{n},   при условии, что длина наибольшего частичного отрезка стремится к нулю

\int\limits^a_b {f(x)} \, dx = \lim_{{ {{n \to \infty} \atop {max \Delta x_{i} \to 0}} \right. } f(c_{i})\cdot \Delta x_{i}

Геометрическая интерпретация определённого интеграла - площадь криволинейной трапеции

0,0(0 оценок)
Ответ:
mddfdfdf
mddfdfdf
29.05.2023 05:29

Пусть функция     y=f(x)      определена на отрезке     [a;b]

Разобьём отрезок произвольным образом на n  частей точками:

a < x_{0}

В каждом интервале произвольным образом выбираем точку

c_{i}\in [x_{i-1};x_{i}]

Cумма

S_{n}=\Sigma^{i=n}_{i=1}f(c_{i})\cdot \Delta x_{i},

где       \Delta x_{i}=x_{i}-x_{i-1}    -  длина частичного отрезка   [x_{i-1};x_{i}] ,

называется интегральной суммой функции f(x)  на отрезке   [a;b].

Определенным интегралом от функции  f(x)   на отрезке   [a;b] называется предел интегральных сумм  S_{n},   при условии, что длина наибольшего частичного отрезка стремится к нулю

\int\limits^a_b {f(x)} \, dx = \lim_{{ {{n \to \infty} \atop {max \Delta x_{i} \to 0}} \right. } f(c_{i})\cdot \Delta x_{i}

Геометрическая интерпретация определённого интеграла - площадь криволинейной трапеции

0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота