Пусть х(км/ч)-собственная скорость катера, а у(км/ч)-скорость течения реки, тогда скорость катера по течению равна (х+у)км/ч, а против течения (х-у)км/ч). Путь пройденный катером по течению равен 1,5(х+у)км., а путь против течения равен 9/4(х-у)км. (9/4ч-это 2ч15мин) . Составим и решим систему уравнений: 1,5(х+у)=27,умножаем на 10 9/4(х-у)=27;умножаем на 4 15(х+у)=270, 9(х-у)=108;
. Составим и решим систему уравнений:
1,5(х+у)=27,умножаем на 10
9/4(х-у)=27;умножаем на 4
15(х+у)=270,
9(х-у)=108;
15х+15у=270,разделим на 5 и умножим на 3
9х-9у=162,
9х-9у=108;
решаем сложения:
18х=270,
9х-9у=108;
х=15,
9*15-9у=108;
х=15,
-9у=-27;
х=15,
у=3.
15(км/ч)-собственная скорость катера
3(км/ч)-скорость течения реки
1) y '= (8√x + 3x^5 )' = (8√x ) '+ (3x^5)' =8(√x) + 3(x^5)' =8*1/2*(x^(-1/2)) +3*5*x^4=
=4/√x +15x^4.
2) у=(5х² +3(1/x-4))' =(5х² +3/x- 12) ' = (5х²) ' +(3/x) - (12) ' =5*(х²) ' +3*(1/x) - 0 =
5*2x +3(-1/x²) =10x -3/x² .
3)
3a) y '= ((x^4)/(3-x) ) =((x^4)' * (3-x) -(x^4)*(3 -x)')/(3-x)² =((4x³(3 -x) - (x^4)*(-1))/(3-x)²
=(12x³ - 4x^4 + x^4)/(3-x)² =(12x³ -3x^4)/(x-3)² =3x³(4-x)/(x-3)² .
3b) y ' =(x^4/3 - x ) = (x^4/3) - (x ) ' =4/3*(x^1/3) -1 =4/3*∛x -1.