Здравствуйте, Sonya2006f!
Чтобы восстановить неполный квадрат суммы, нужно представить крайние члены данной формулы в виде числа со степенью.
Разложение чисел на простые множители:
Теперь когда мы знаем, как представить данные члены в виде числа со степенью, запишем формулу, по которой выполнялось разложение.
Формула сокращённого умножения:
НЕПОЛНЫЙ КВАДРАТ СУММЫ: .
Зная, что первоначально выражение имело вид , перемножим по формуле эти члены между собой и получим ответ на Ваш вопрос.
Разложение данного выражения на множители:
Окончательный ответ данной задачи:
Неполный квадрат суммы данного выражения - "6x".
С Уважением, NeNs07.
1) х²-3х-40>0
D=(-(-3))²-4×1×(-40)=9+169=169
x1=(-(-3)-√169)/2×1=(3-13)/2=-5
x2=(-(-3)+√169)/2×1=(3+13)/2=16/2=8
x∈(-∞;-5)и(8;+∞)
х⁺(-5)--₋(8)--⁺---х
2) х²>-5х+14
х²+5х-14>0
По теореме Виета:
х₁+х₂=-5
х₁×х₂=-14
х₁=-7
х₂=2
х---⁺---(-7)---₋---(2)---⁺---х
х∈(-∞;-7) и (2;+∞).
3) 10х²+2х+34>4х²-х+79
10х²+2х+34-4х²+х-79>0
6х²+3х-45>0
D=(-3)²-4×6×(-45)=9+1080=1089
x₁=(-3-√1089)/2×6=(-3-33)/12=-36/12=-3
x₂=(-3+√1089)/2×6=(-3+33)/12=30/12=5/2=2,5
x---⁺---(-3)---₋---(2,5)---⁺---x
x ∈(-∞;-3) и (2,5;+∞).
4) 2х²+14х-20>(х-6)²
2х²+14х-20-(х²-12х+36)>0
2х²+14х-20-х²+12х-36>0
х²+26х-56>0
D=(-26)²-4×1×(-56)=676+224=900
x₁=(-26-√900)/2×1=(-26-30)/2=-56/2=-28
x₂=(-26+√900)/2×1=(-26+30)/2=4/2=2
x---⁺---(-28)---₋---(2)---⁺---x
x∈(-∞;-28) и (2;+∞).
Здравствуйте, Sonya2006f!
Чтобы восстановить неполный квадрат суммы, нужно представить крайние члены данной формулы в виде числа со степенью.
Разложение чисел на простые множители:
Теперь когда мы знаем, как представить данные члены в виде числа со степенью, запишем формулу, по которой выполнялось разложение.
Формула сокращённого умножения:
НЕПОЛНЫЙ КВАДРАТ СУММЫ: .
Зная, что первоначально выражение имело вид , перемножим по формуле эти члены между собой и получим ответ на Ваш вопрос.
Разложение данного выражения на множители:
Окончательный ответ данной задачи:
Неполный квадрат суммы данного выражения - "6x".
С Уважением, NeNs07.
1) х²-3х-40>0
D=(-(-3))²-4×1×(-40)=9+169=169
x1=(-(-3)-√169)/2×1=(3-13)/2=-5
x2=(-(-3)+√169)/2×1=(3+13)/2=16/2=8
x∈(-∞;-5)и(8;+∞)
х⁺(-5)--₋(8)--⁺---х
2) х²>-5х+14
х²+5х-14>0
По теореме Виета:
х₁+х₂=-5
х₁×х₂=-14
х₁=-7
х₂=2
х---⁺---(-7)---₋---(2)---⁺---х
х∈(-∞;-7) и (2;+∞).
3) 10х²+2х+34>4х²-х+79
10х²+2х+34-4х²+х-79>0
6х²+3х-45>0
D=(-3)²-4×6×(-45)=9+1080=1089
x₁=(-3-√1089)/2×6=(-3-33)/12=-36/12=-3
x₂=(-3+√1089)/2×6=(-3+33)/12=30/12=5/2=2,5
x---⁺---(-3)---₋---(2,5)---⁺---x
x ∈(-∞;-3) и (2,5;+∞).
4) 2х²+14х-20>(х-6)²
2х²+14х-20-(х²-12х+36)>0
2х²+14х-20-х²+12х-36>0
х²+26х-56>0
D=(-26)²-4×1×(-56)=676+224=900
x₁=(-26-√900)/2×1=(-26-30)/2=-56/2=-28
x₂=(-26+√900)/2×1=(-26+30)/2=4/2=2
x---⁺---(-28)---₋---(2)---⁺---x
x∈(-∞;-28) и (2;+∞).